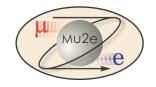


Mu2e

HEPAP Facilities Review Feb. 13, 2013

Ron Ray Mu2e Project Manager



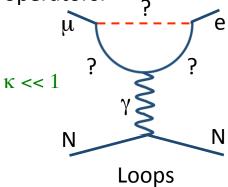
US-Japan

Introduction

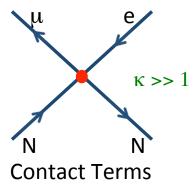
- Mu2e is a search for Charged Lepton Flavor Violation (CLFV) via the coherent conversion of μ⁻N → e⁻N
- Mu2e will repurpose the Fermilab antiproton source into an intense source of low energy muons to achieve world's best sensitivity.
- Target sensitivity has great discovery potential
 - Goal: <0.5 events background</p>
 - Goal: Single-event-sensitivity of 2 x 10⁻¹⁷ (relative to ordinary μ capture)
 - Yields Discovery Sensitivity for all rates > few 10⁻¹⁶
- Factor of 10⁴ improvement over world's previous best results

- In the 2008 P5 Strategic Plan for the next 10 years, the role played by flavor physics in developing the Standard Model was highlighted along with its importance moving forward.
 - Prediction of charm quark, CP violation, CKM model, Neutrino mass, etc.
- Most new physics models so far postulated provide new sources of flavor phenomena.
- Quark flavor is violated. Neutrino flavor is violated.
 - Both implied something profound about the underlying physics
 - Both garnered Nobel Prizes
- What about charged lepton flavor?

- Significant worldwide interest from Energy and Intensity Frontiers and the theoretical community
 - Rare CLFV decays of μ, τ, K, B-mesons
- Rates negligible in vSM but wide array of new physics models predict rates that are measurable in next generation experiments.
 - Sensitive to new physics well above the TeV scale (10³ 10⁴ TeV).
- Rates of CLFV processes are model dependent and vary widely depending on the underlying physics.
 - CLFV processes are powerful discriminators.
- The most stringent limits on CLFV come from muons because of the relative "ease" of producing an intense source.
- Muon-to-electron conversion offers excellent discovery potential across a breadth of models and will explore impressive mass scales.

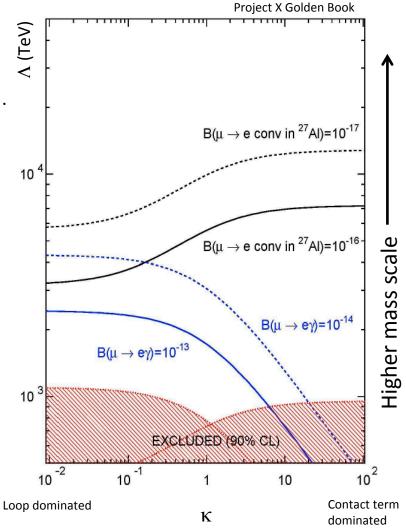


Model Independent Evaluation

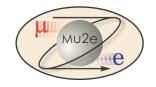


$$L_{CLFV} = \frac{m_{\mu}}{(1+\kappa)\Lambda^{2}} \,\overline{\mu}_{R} \,\sigma_{\mu\nu} \,e_{L} \,F^{\mu\nu} + \frac{\kappa}{(1+\kappa)} \,\overline{\mu}_{L} \gamma_{\mu} e_{L} \left(\sum_{q=u,d} \overline{q}_{L} \gamma^{\mu} q_{L} \right).$$

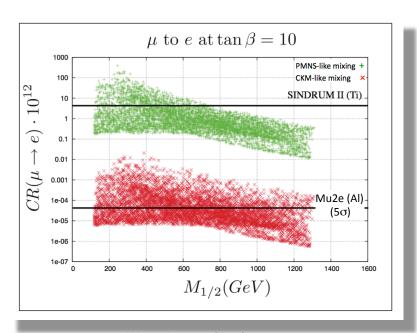
 Λ is mass scale of new physics κ controls relative contribution of two classes of operators:

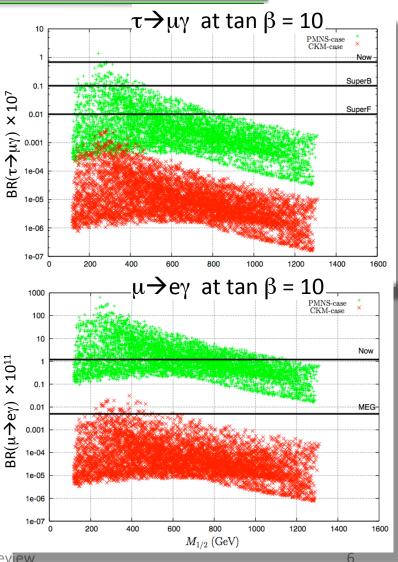


Contributes to $\mu \rightarrow e\gamma$


Does not contribute to $\mu \rightarrow e\gamma$

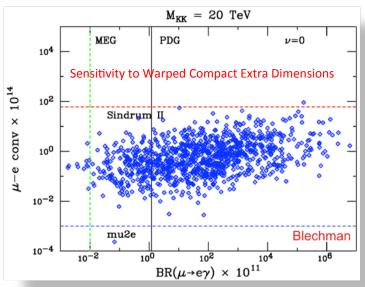
Both contribute to muon-to-electron conversion

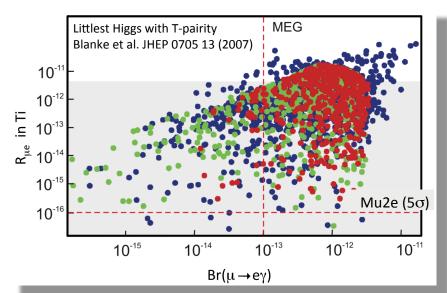

A. De Gouvea



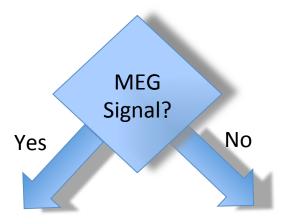
A Specific Model

- CLFV rates as a function of gaugino mass at the GUT scale for an SO(10) SUSY GUT model.
- Colors indicate different assumptions about neutrino Yukawa couplings.
- Muon-to-electron conversion has the greatest sensitivity.

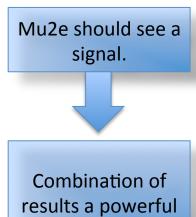

L. Calibbi et al. PRD **74** (2006) 116002



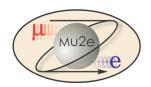
- Mu2e has sensitivity over this entire parameter space.
- Many examples illustrate the power of combined results.
- Rates and correlations of CLFV processes vary widely for different models.
- More measurements lead to greater discrimination power.

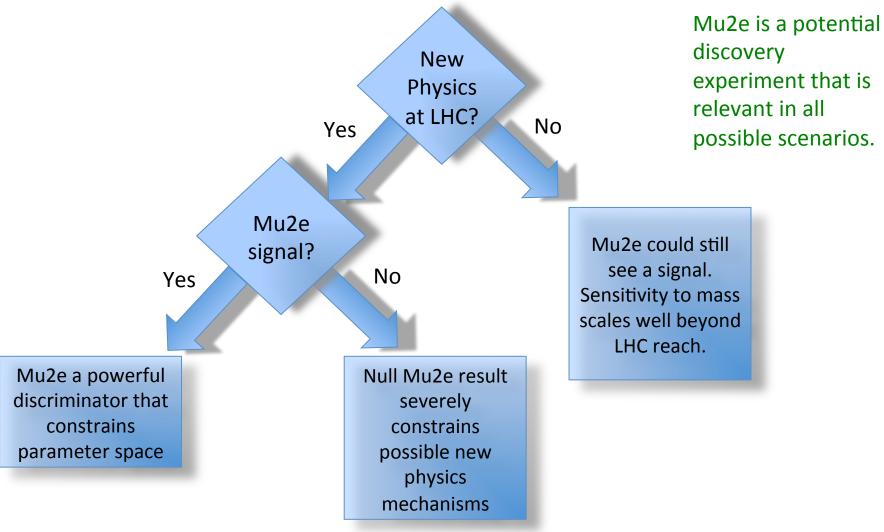

Littlest Higgs Model. The different colored points refer to different choices for the structure of the mirror-lepton mixing matrix that gives rise to the CLFV effects.

Scan of Randall-Sundrum Parameter space

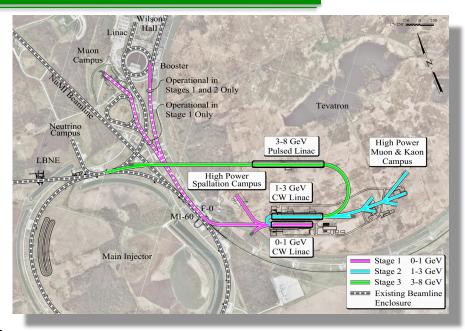


Mu2e is a potential discovery experiment that is relevant in all possible scenarios.




discriminator

Mu2e could still see a signal.
Sensitive to process that MEG is not.



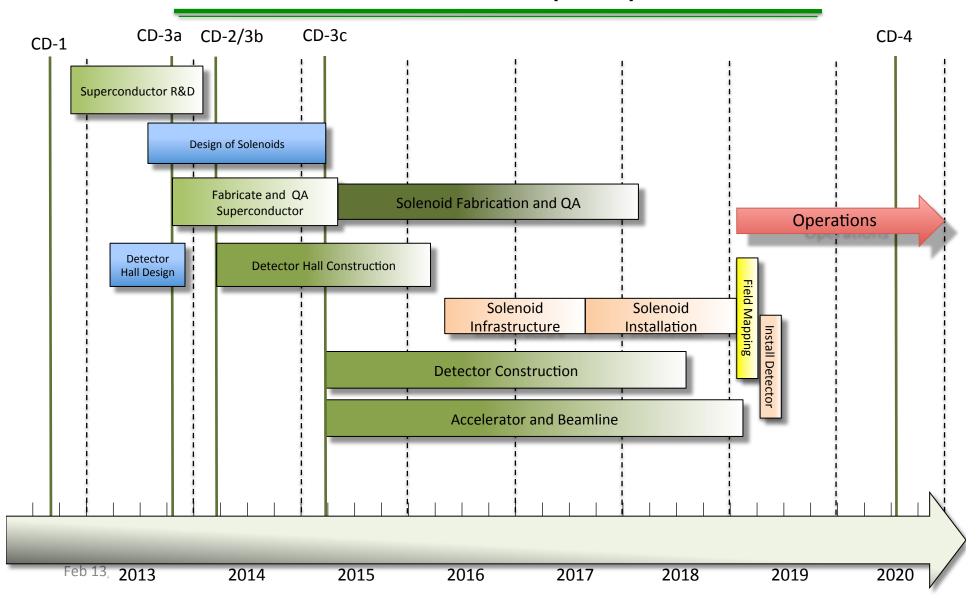
- Mu2e uses 8 kW proton beam from Booster
- First stage of Project X could provide up to x10 more beam power.
 - Narrower proton pulses
 - No pbar background
 - Flexible beam structure
 - Requires some modest upgrades to Mu2e apparatus to handle higher beam power.
 - Important physics goals regardless of results from first phase of Mu2e.
 - Flexible time structure of Project X beam allows access to different stopping target nuclei where model dependent effects vary by factor of 2.
 - Investigating possibility of μ→eee for Snowmass

- Later stage of Project X could provide ~ 100X the beam power
 - Significant redesign of Mu2e apparatus required to handle increased beam power.

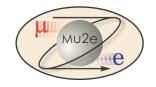


Mu2e - Absolutely Central

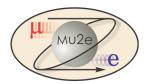
- Mu2e is <u>absolutely central</u> to the goals of HEP in the US over the next decade.
- Provides broad discovery potential, excellent reach and access to highest mass scales.
 - Real chance to see new physics, not just set a better limit.
- Complementary with other Energy and Intensity Frontier programs. Adds significant value to existing international program.
- A Critical step that helps to establish a world class Intensity Frontier Program in the US in this decade.
- Second phase of Mu2e is a "day 1" experiment for first stage of Project X.



- Mu2e Ready to construct.
- Mu2e will initiate construction in 2014.
 - Procure production conductor for solenoids
 - Break ground for detector hall
- No development of new technologies required.
 - R&D now focused on validation of construction techniques.
 - Solenoids are complicated but rely on conventional technology.
 - Detector components are familiar technologies.
 - Accelerator work similar to other upgrades.
- By FY15 all detector systems will have constructed and tested pre-production prototypes. All systems will have passed construction readiness reviews and be ready for construction.

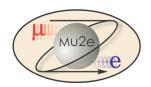


Schedule (CY)



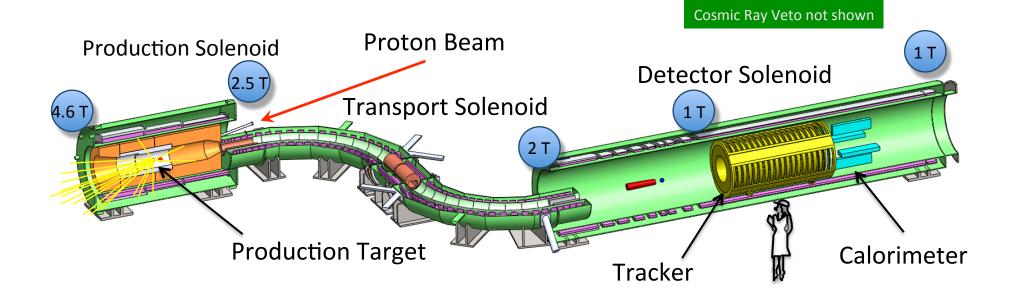
Summary

- Mu2e has discovery sensitivity over a wide array of physics models and probes the underlying physics in ways that are complementary to the Energy, Cosmic and remaining Intensity Frontier program.
- Second phase of Mu2e is a "day 1" experiment for first stage of Project X.
- Mu2e is <u>absolutely central</u> to the goals of particle physics in the US over the next decade.
 - Consistent with P5 evaluation.
- Mu2e will <u>initiate construction</u> in FY14.



Backup Slides

Production Solenoid

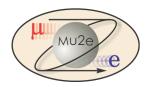

- Production target
- Graded field

Transport Solenoid

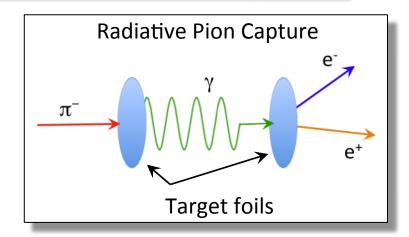
- Delivers ~ 0.0016 stopped μ^- per incident proton
- 10¹⁰ Hz of stopped muons
- Collimation system selects muon charge and momentum range
- Pbar window in middle of central collimator

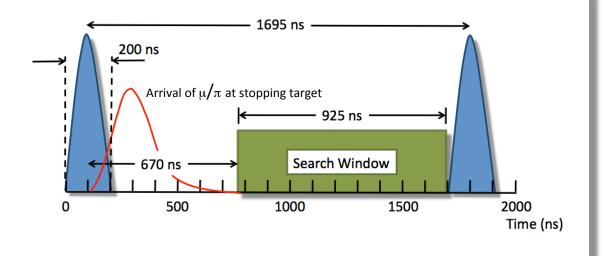
Detector Solenoid


- Muon stopping target
- Tracker
- Calorimeter
- Warm bore evacuated to 10⁻⁴
 Torr



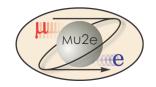
- We make muons by slamming 8 GeV protons into a target.
- Batches of protons from the Booster are transported through existing beamlines to the Recycler Ring where they are re-bunched and transported to the Delivery Ring through existing transport lines.
- Beam is slow extracted from Delivery Ring in microbunches of ~ 10⁷ protons every 1695 ns through a new external beamline to the Mu2e production target.
- Run simultaneously with NOvA
- We are repurposing the pbar facilities to make muons.





Beam Structure

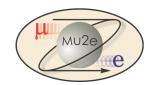
Prompt background:


Processes where the detected background electron is nearly coincident in time with the arrival of a beam particle at the muon stopping target.

Pulsed beam combined with extinction of beam between pulses and delayed search window reduces prompt backgrounds like Radiative Pion Capture.

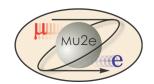
Thesis Topics

- In Conventional HEP/Nuclear Physics:
 - Mu2e Conversion with different reconstruction techniques
 - $\mu^-N(A,Z)\rightarrow e^+N(A,Z-2)$ ($\Delta L=2$ process)
 - Precision measurement of muon Decay in Orbit spectrum
 - Mu2e Normalization mode (nuclear capture)
 - Radiative pion capture spectrum
 - Radiative muon capture spectrum
 - Beam related backgrounds
 - Electrons
 - Antiprotons
 - Calibration Measurements
 - \circ π⁺→e⁺ν (monoenergetic line)
 - Spallation muons
 - Michel edge
- Detector Development
 - Good at foreign institutions



Thesis Topics

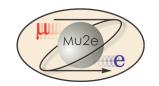
- In Accelerator PhD Program:
 - Extinction Method
 - Extinction Measurement
 - Slow Extraction
- Mu2e @ Project X
 - All measurements with higher sensitivity and different target nuclei
 - Flexible time structure of Project X beam allows access to different stopping target nuclei where model dependent effects vary by factor of 2.
 - Investigating possibility of μ→eee for Snowmass



World Competition

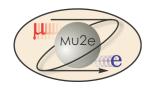
Significant interest in this physics on 3 continents

- PSI
 - MEG upgrade recently approved.
 - Estimated Sensitivity of 6 × 10⁻¹⁴ (90% C.L.)
 - Comparable to Mu2e for loop physics but no sensitivity to other sources
 - Resume data taking in 2016.
 - $\mu^+ \rightarrow e^+ e^+ e^-$
 - Proposal recently approved.
 - \circ Broader reach than μ →eγ but does not access the mass scales available to Mu2e.
 - Data possibly available by the end of the decade. Competes with MEG.
 - PSI program and Mu2e are complementary. Combination with Mu2e is a powerful discriminator.

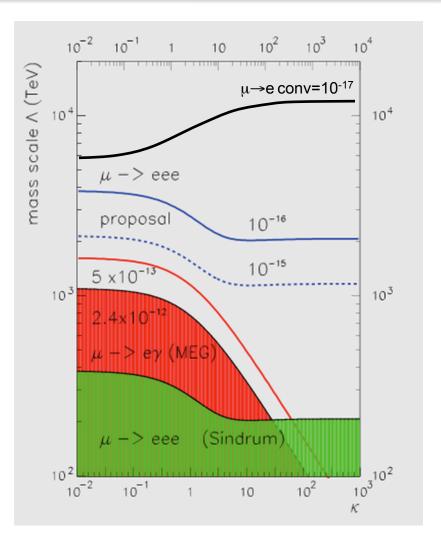

World Competition

J-PARC

- DeeMe Muon Conversion
 - Look for muon conversion directly from production target
 - Fast and cheap way to get to sensitivity of 10⁻¹⁴
 - Requires extraordinary extinction ~ 10⁻¹⁷
 - Backgrounds still under study
 - Still in design phase.
 - Physics result in 5 year, before Mu2e or COMFT.


World Competition

- COMET
 - Recently broken into 2 phases.
 - Phase II reaches similar sensitivity to Mu2e
 - Advertised schedules similar.


	SES	Background	Year
COMET Phase-I	3 x 10 ⁻¹⁵	0.03	~2016
COMET PHASE-II	3 x 10 ⁻¹⁷	0.4	~2019
Mu2e	2 x 10 ⁻¹⁷	0.5	~2019

- Competition is indicative of compelling physics
- Confirmation of significant results by competing experiments generally considered important in our field.

µ→еее

