Quantum Chromodynamics

Lecture 1: All about color

Hadron Collider Physics Summer School 2010

John Campbell, Fermilab

References and thanks

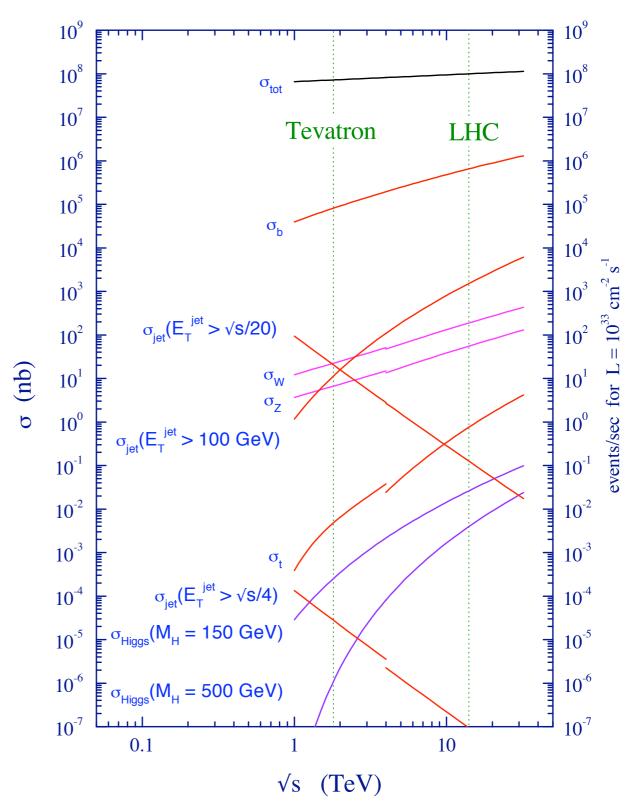
- Useful references for this short course are:
- QCD and Collider Physics
 R. K. Ellis, W. J. Stirling and B. R. Webber
 Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology
- Hard Interactions of Quarks and Gluons: a Primer for LHC Physics J. C., J. W. Huston and W. J. Stirling Rept. Prog. Phys. 70, 89 (2007) [hep-ph/0611148]
- Resource Letter: Quantum Chromodynamics
 A. S. Kronfeld and C. Quigg arXiv:1002.5032 [hep-ph] (for the American Journal of Physics)

• Thanks to R. K. Ellis and G. Zanderighi, for lecture notes from previous schools - upon which much of these lectures will be based.

QCD: why we care

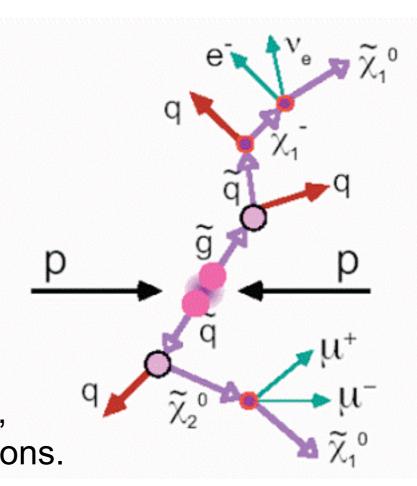
- It is no surprise that hadron colliders require an understanding of QCD.
- This plot demonstrates the extent to which we must have a good understanding,
 - cross sections for inclusive bottom production and final states with jets of hadrons are near the top.
 - Higgs boson cross sections are at the bottom.
- Discovering such New Physics requires a sophisticated, quantitative understanding of QCD.
- In these lectures, we will develop the tools necessary for such a task.

proton - (anti)proton cross sections



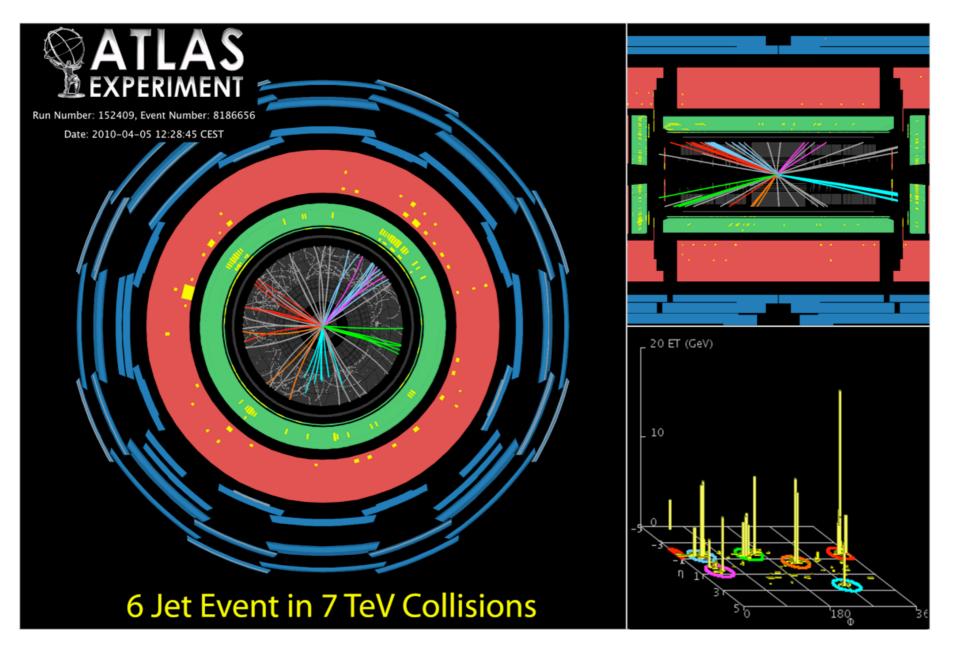
QCD: why we care even more

- If a Higgs-like signal is observed, to confirm its interpretation as the Higgs boson requires measurement of its couplings and quantum numbers.
 - need an accurate understanding of the production/decay mechanisms.
- Hopefully, we will see more than just a Higgs boson.
 - supersymmetry?
 - extra dimensions?
 - technicolor?
- All of these models of New Physics introduce new particles that will (most likely) decay as they traverse the detectors, into "old" colored particles → QCD interactions.



The challenge of QCD

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu}^A F_A^{\mu\nu} + \sum_{\text{flavors}} \bar{q}_i (i \not \!\!\!D - m)_{ij} q_j$$

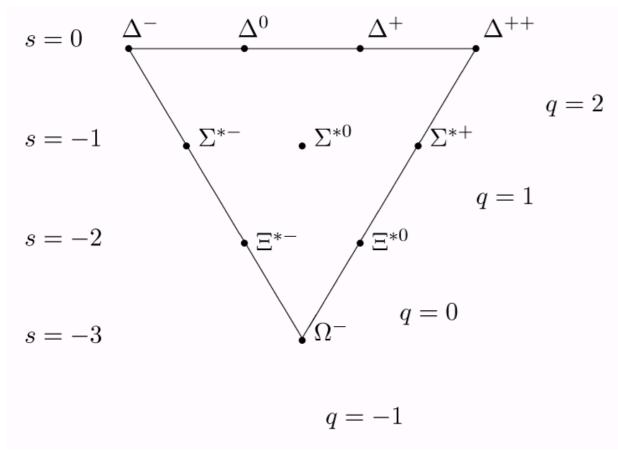


- Understand why the Lagrangian looks like this:
 - why color and why SU(3)?
- Understand some features of this Lagrangian:
 - in practical terms, how does QCD differ from QED?
- Understand how to use this Lagrangian:
 - how can we use it to make predictions?

Quarks and color

 The quark model is a useful way of categorizing mesons (baryons) in terms of two (three) constituent quarks.

Q=+2/3	<mark>up</mark>	charm	top
	m _u ~4 MeV	m _c ~1.5 GeV	m _t ~172 GeV
Q=-1/3	down	strange	bottom
	m _d ~7 MeV	m _s ~135 MeV	m _b ~5 GeV

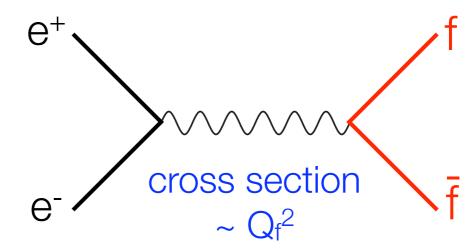


Baryon decuplet (S=3/2)

- Simple picture must be amended due to, for example, Δ⁺⁺=(u,u,u) in a symmetric spin state.
- The baryons should obey the Pauli principle: the overall wavefunction should be antisymmetric.
- In order to accommodate this, the antisymmetry should be carried by another quantum number: color.
- Observed particles are colorless.

Probing color

- Subsequent realization that color could be probed directly in e⁺e⁻ collisions.
 - production of fermion pairs through a virtual photon sensitive to electric charge of fermion and the number of degrees of freedom allowed.
- Hence investigate quarks through "R-ratio":



$$R = \frac{\sigma \left(e^{+}e^{-} \to \text{hadrons}\right)}{\sigma \left(e^{+}e^{-} \to \mu^{+}\mu^{-}\right)} = N_{c} \sum_{f} Q_{f}^{2} \qquad \text{quark}$$

$$\text{charge}$$

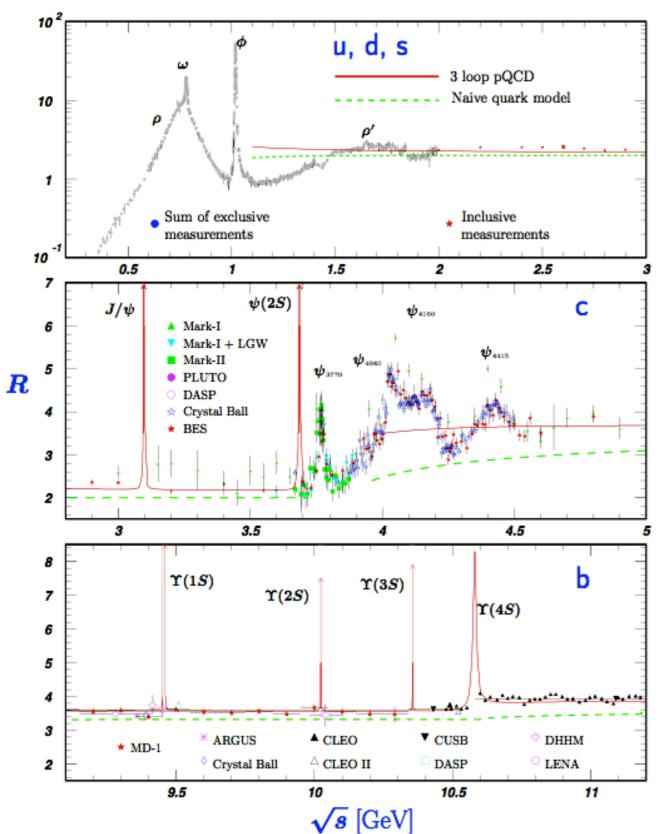
$$\text{assume } N_{c} \text{ colors of quark}$$
sum over active quarks

(this is at least the most basic expectation - corrections later)

• Each active quark is produced in N_c colors: must be above the kinematic threshold for each quark in the sum, i.e. $\sqrt{s} > 2m_q$.

Experimental measurements

Broad support for N_c=3



$$R_{u,d,s} = 3 \times \left[\left(\frac{2}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 + \left(-\frac{1}{3} \right)^2 \right]$$

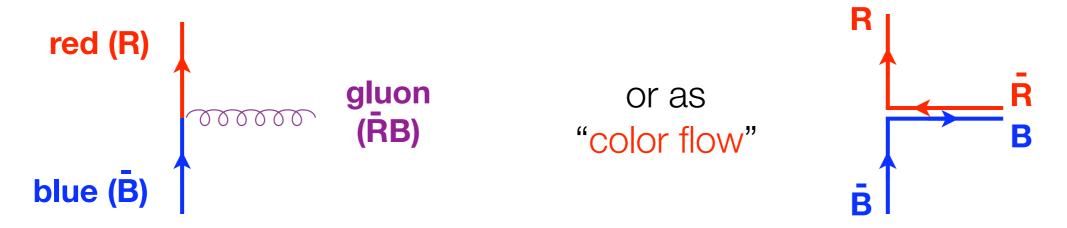
$$= 2$$

$$R_{u,d,s,c} = R_{u,d,s} + 3 \times \left(\frac{2}{3}\right)^2$$
$$= \frac{10}{3}$$

$$R_{u,d,s,c,b} = R_{u,d,s,c} + 3 \times \left(-\frac{1}{3}\right)^{2}$$
$$= \frac{11}{3}$$

QCD interactions

- In QCD, the color quantum number is mediated by the gluon, analogous to the photon in QED.
 - it will be responsible for changing quarks from one color to another; as such it must also carry a color charge (not neutral, as in QED).
- 1st try: mediating quark and anti-quark of 3 different colors → 3 x 3 = 9 gluons.



 In fact we should take six such combinations, plus three mutually orthogonal combinations of same-color states.

$$\ddot{R}B$$
 $\ddot{R}G$ $(\ddot{R}R - \ddot{B}B)/\sqrt{2}$ $\ddot{G}B$ $\ddot{G}R$ $(\ddot{R}R + \ddot{B}B - 2\ddot{G}G)/\sqrt{6}$ $\ddot{R}R + \ddot{B}B + \ddot{G}G)/\sqrt{3}$

QCD interactions

- Since color is an internal degree of freedom, we expect invariance of the theory under rotations in this color space.
 - this requires that eight of our color combinations share the same coupling:

$$\vec{R}\vec{B}$$
 $\vec{R}\vec{G}$ $(\vec{R}\vec{R} - \vec{B}\vec{B})/\sqrt{2}$ $(\vec{R}\vec{R} + \vec{B}\vec{B} - 2 \vec{G}\vec{G})/\sqrt{6}$ $\vec{B}\vec{R}$ $\vec{B}\vec{G}$

• the remaining combination only transforms into itself - it is a color singlet:

$$(RR + BB + GG)/\sqrt{3}$$

- Such a combination is not present in QCD: we are left with 8 gluons.
- The color charge of each gluon is represented by a matrix in color space.
 - the eight combinations result in eight matrices, T^A, with A=1,..8.
 - a conventional choice is to write these in terms of the Gell-Mann matrices, which are just an extension of Pauli Matrices:

$$T^A = \frac{1}{2}\lambda^A$$

Gell-Mann matrices

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \qquad \lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix} \qquad \lambda^{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

- These matrices are Hermitian, $(\lambda^A)^{\dagger} = \lambda^A$, and traceless.
 - only two diagonal matrices: the color singlet would not have been traceless.
- They obey the two relations:

completely antisymmetric set of real constants, f ABC

$$\operatorname{Tr}\left(\lambda^{A}\lambda^{B}\right) = 2\delta^{AB}, \quad \left[\lambda^{A}, \lambda^{B}\right] = 2if^{ABC}\lambda^{C}$$

Color matrices

Translating back to color matrices, we have:

$$[T^A, T^B] = if^{ABC}T^C$$
, $Tr(T^AT^B) = T_R\delta^{AB}$ (with $T_R = 1/2$)

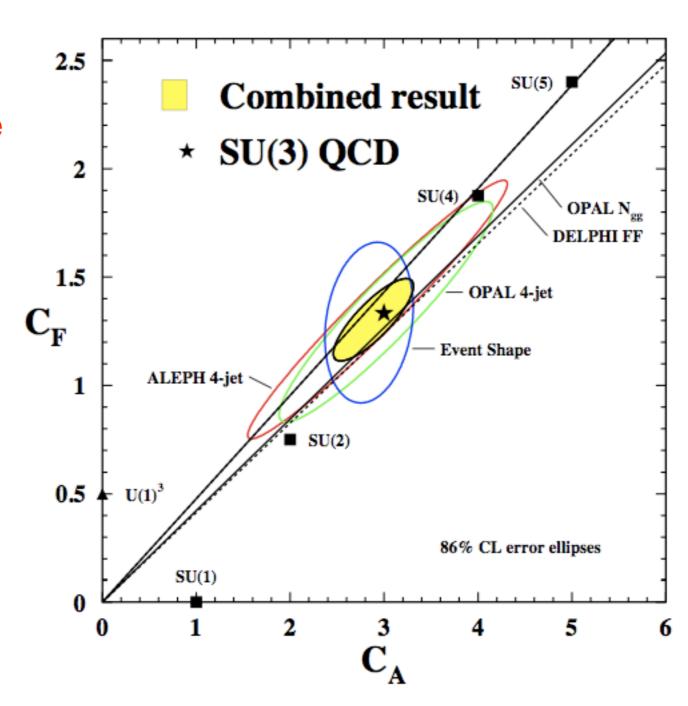
- The first of these relations reflects that fact that:
 - the matrices T^A are the generators of the SU(3) group, A=1,...,8;
 - the antisymmetric set, fABC, contains the SU(3) structure constants.
- The second relation is just a normalization convention.
- The group structure is also characterized by two other relations:

$$\sum_{C,D} f^{ACD} f^{BCD} = C_A \, \delta^{AB} \qquad \text{with } C_A = N_c = 3$$

$$\sum_{A} T^A T^A = C_F \, \mathbf{1} \qquad \text{with } C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3}$$
 "Casimir"

Further support for SU(3)

- These color sums are exactly the quantities which will appear when we compute cross sections involving QCD.
- In particular, the cross section for 4-jet production in e⁺e⁻ annihilation at LEP is sensitive to both C_A and C_F.
- At this point, no one expected that SU(3) was not the correct description.
- However, demonstrates that the group structure is an important phenomenological aspect - not just math!



The QCD Lagrangian

The quantum field theory of QCD is then based on the Lagrangian:

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu}^A F_A^{\mu\nu} + \sum_{\text{flavors}} \bar{q}_i \left(iD_{\mu}\gamma^{\mu} - m\right)_{ij} q_j$$

degrees of freedom

field strength tensor, gluon in the non-interacting case, the Dirac term for quark d.o.f.

Color plays a crucial role in the Lagrangian:

$$F_{\mu\nu}^{A} = \partial_{\mu}A_{\nu}^{A} - \partial_{\nu}A_{\mu}^{A} - g_{s}f^{ABC}A_{\mu}^{B}A_{\nu}^{C}$$

 A_{μ}^{A} : field for the spin-1 gluon (just like the photon in QED, but with an extra color label)

self-interaction term for gluon fields: called "non-Abelian" since it arises from the SU(3) structure

QCD gauge transformations

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4} F_{\mu\nu}^A F_A^{\mu\nu} + \sum_{\text{flavors}} \bar{q}_i \left(i D_{\mu} \gamma^{\mu} - m \right)_{ij} q_j$$

Color also appears in the definition of the covariant derivative:

$$(D_{\mu})_{ij} = \partial_{\mu}\delta_{ij} + ig_s(T^A A_{\mu}^A)_{ij}$$

which couples together quarks and gluons in the interacting theory.

 Such a definition ensures that the QCD Lagrangian remains invariant under local gauge transformations of the form,

$$q_i(x) \rightarrow q'_i(x) = \Omega_{ij}(x)q_j(x) \quad \left(\Omega_{ik}^{\dagger}(x)\Omega_{kj}(x) = \delta_{ij}\right)$$

$$(D_{\mu})_{ik} q_k(x) \to (D'_{\mu})_{ik} q'_k(x) = \Omega_{ij}(x) (D_{\mu})_{jk} q_k(x)$$

- Covariant means that it transforms in the same way as the quark field itself.
- Imposing these transformation laws ensures invariance of the second term.

QCD gauge transformations

- To apply the argument on the first term relies upon the specific form we have introduced for the covariant derivative.
- · This is easiest to see by manipulating the field strength tensor into a new form,

$$\begin{split} T^A F_{\mu\nu}^A &= \partial_\mu (T^A A_\nu^A) - \partial_\nu (T^A A_\mu^A) - g_s T^A f^{ABC} A_\mu^B A_\nu^C \quad \text{(use comm. relation)} \\ &= \partial_\mu T^A A_\nu^A - (T^A A_\nu^A) \partial_\mu - \partial_\nu T^A A_\mu^A + (T^A A_\mu^A) \partial_\nu \quad \text{(consider action} \\ &\quad + i g_s \left[(T^B A_\mu^B) (T^C A_\nu^C) - (T^C A_\nu^C) (T^B A_\mu^B) \right] \quad \text{on a field)} \\ &= \left[\partial_\mu + i g_s (T^B A_\mu^B) \right] \left[T^A A_\nu^A + \frac{1}{i g_s} \partial_\nu \right] - \left[\partial_\nu + i g_s (T^B A_\nu^B) \right] \left[T^A A_\mu^A + \frac{1}{i g_s} \partial_\mu \right] \\ &= \frac{1}{i g_s} \left[D_\mu, D_\nu \right] \end{split}$$

 Lastly, exploit the fact that the commutator transforms in the same way as the covariant derivative itself:

$$[D_{\mu}, D_{\nu}]_{ik} q_k(x) \to \Omega_{ij}(x) [D_{\mu}, D_{\nu}]_{jk} q_k(x)$$

QCD gauge transformations

Putting it all together:

$$\left(T^A F_{\mu\nu}^A\right)_{ij} q_j(x) \to \left(T^A F'_{\mu\nu}^A\right)_{ij} q'_j(x)$$

$$\Omega_{ij}(x) \left(T^A F_{\mu\nu}^A\right)_{jk} q_k(x) = \left(T^A F'_{\mu\nu}^A\right)_{ij} \Omega_{jk}(x) q_k(x)$$

so that the field strength transforms as,

$$\left(T^A F_{\mu\nu}^A\right)_{ij} \to \Omega_{ik}(x) \left(T^A F_{\mu\nu}^A\right)_{k\ell} \Omega_{\ell j}^{-1}(x)$$

- The field strength is no longer gauge invariant as in QED, a reflection of the self-interacting nature of gluons.
- However the combination that appears in the Lagrangian is invariant, as required:

$$-\frac{1}{4}F_{\mu\nu}^{A}F_{A}^{\mu\nu} = -\frac{1}{2}\operatorname{Tr}\left(T^{A}F_{\mu\nu}^{A}T^{B}F_{B}^{\mu\nu}\right)$$
$$\rightarrow -\frac{1}{2}\operatorname{Tr}\left(\Omega T^{A}F_{\mu\nu}^{A}T^{B}F_{B}^{\mu\nu}\Omega^{-1}\right)$$

Using the QCD Lagrangian

- Armed with a Lagrangian that is invariant under gauge transformations, we can investigate many features of QCD.
- In these lectures, we're interested in perturbative QCD and cross sections computed from Feynman diagrams: convert Lagrangian into Feynman rules.
- Simplest place to start: free, or non-interacting Lagrangian (g_s→0).
- Prescription: make the replacement $\partial_{\mu} \to -ip_{\mu}$ (c.f. Fourier expansion) and then multiply by *i* to obtain inverse propagator.

gluons
$$-\frac{1}{4} \left(\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} \right) \left(\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} \right) \rightarrow \frac{i}{2} A_{\mu} \left(p^2 g^{\mu\nu} - p^{\mu} p^{\nu} \right) A_{\nu}$$
 Cannot invert!

Gauge fixing

 The solution is to fix a gauge: add an additional term to the Lagrangian which depends upon an arbitrary gauge parameter λ.

$$\mathcal{L}_{\text{gauge-fixing}} = -\frac{1}{2\lambda} \left(\partial^{\mu} A_{\mu}^{A} \right)^{2}$$

• This contributes an extra term: $\frac{i}{2\lambda}A_{\mu}p^{\mu}p^{\nu}A_{\nu}$ such that an inverse now exists.

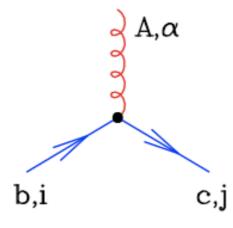
gluons A,
$$\mu$$
 p B, ν $\frac{-i}{p^2}\left(g^{\mu\nu}-(1-\lambda)\frac{p^\mu p^\nu}{p^2}\right)\delta^{AB}$

- Different gauges may be useful in different calculations, but ultimately must all give the same result.
 - a particularly simple choice is often the Feynman gauge, λ=1.
- Further complication: covariant gauge-fixing introduces unphysical d.o.f. that must be cancelled by ghost contributions we will not discuss them here.

QCD interactions

 Interactions between the quarks and gluons can be read off from the terms of order g_s and higher.

quark-gluon (from covariant derivative)



$$-ig (t^{A})_{cb} (\gamma^{\alpha})_{ji}$$

NB: sum over quark colors

→ trace over T strings

$$-g \ f^{\text{ABC}} \big[(p-q)^{\gamma} g^{\alpha\beta} + (q-r)^{\alpha} g^{\beta\gamma} + (r-p)^{\beta} g^{\gamma\alpha} \big]$$
 (all momenta incoming)

self interactions
(from additional terms in the field **A**, α strength)

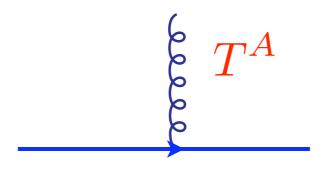
$$A, \alpha$$
 C, γ
 D, δ

$$\begin{split} -ig^2 & f^{XAC}f^{XBD} & \left[g^{\alpha\beta}g^{\gamma\delta} \! - \! g^{\alpha\delta}g^{\beta\gamma} \right] \\ -ig^2 & f^{XAD}f^{XBC} & \left[g^{\alpha\beta}g^{\gamma\delta} \! - \! g^{\alpha\gamma}g^{\beta\delta} \right] \\ -ig^2 & f^{XAB}f^{XCD} & \left[g^{\alpha\gamma}g^{\beta\delta} \! - \! g^{\alpha\delta}g^{\beta\gamma} \right] \end{split}$$

Quantum number management

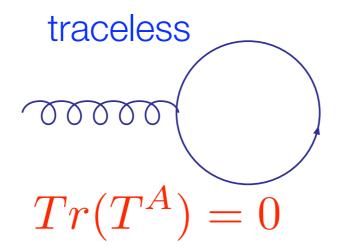
- Since color is a completely separate degree of freedom, it is often useful to factorize out any dependence on color at an early stage of the calculation.
- Each Feynman diagram will be associated with a particular color factor, which
 it is often useful to calculate and account for separately.
- A pictorial way of doing this can be very useful.

from the Feynman rules



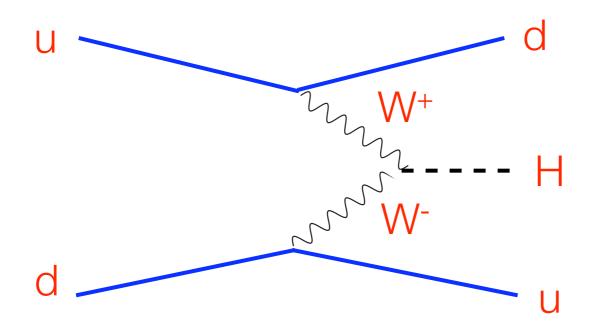
fABC

properties of the color matrices



Simple loop calculation

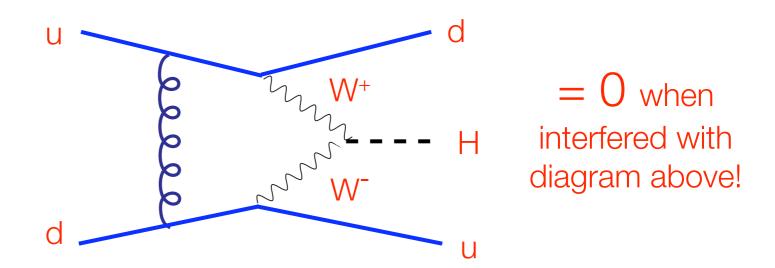
Vector boson fusion is an important Higgs search channel at the LHC.



Basic idea: incoming quarks radiate W (or Z) bosons without changing direction much.

Higgs boson is produced in the central area of the detector relatively cleanly.

Simple picture corrected by gluon emission and absorption by the quarks:



Other color identities

Identities we have already seen:

$$\sum_{A} T^A T^A = C_F \, \mathbf{1}$$

$$= C_F \longrightarrow$$

$$\sum_{C,D} f^{ACD} f^{BCD} = C_A \, \delta^{AB}$$

$$C^D f^{BCD} = C_A \, \delta^{AB}$$
 where $C_A \, \delta^{AB}$

A new relation, the Fierz identity:

$$\sum_{A} (T^A)_{ij} (T^A)_{k\ell} = \frac{1}{2} \left(\delta_{i\ell} \delta_{jk} - \frac{1}{N_c} \delta_{ij} \delta_{k\ell} \right)$$
 (note direction of arrows)
$$\mathbf{j} = \frac{1}{2} \left(\begin{array}{c} \mathbf{j} \\ \mathbf{k} \end{array} \right) \left(\begin{array}{c} \mathbf{j} \\$$

Color at work

H. Ita, Blackhat (June 2010)

W+4 jets on its way

W⁻+4jets+X

How is approx. made?

What is being dropped?

Cuts: $\mu_R = \mu_f = \hat{H}_T/2$

 $p_T^{jet} > 25 \text{ GeV} \quad |\eta^{jet}| < 3$

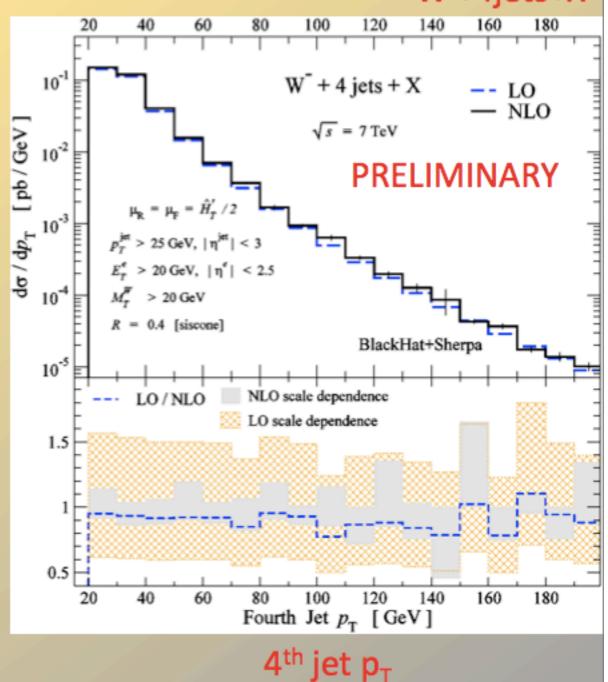
 $E_T^e > 20 \text{ GeV} \qquad |\eta_e| < 2.5$

 M_{TW} >20 GeV R > 0.4[siscone]

Leading color approximation:

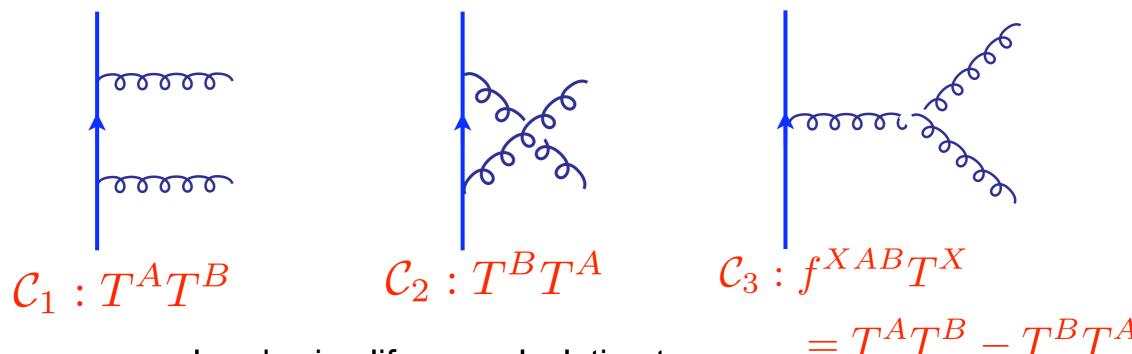
- 8-point virtual amplitudes
- Off-shell W
- in virtual keep up to n_f/N_c terms drop order 1/(N_c)² terms and 6q real contribution

Under good control for physics!

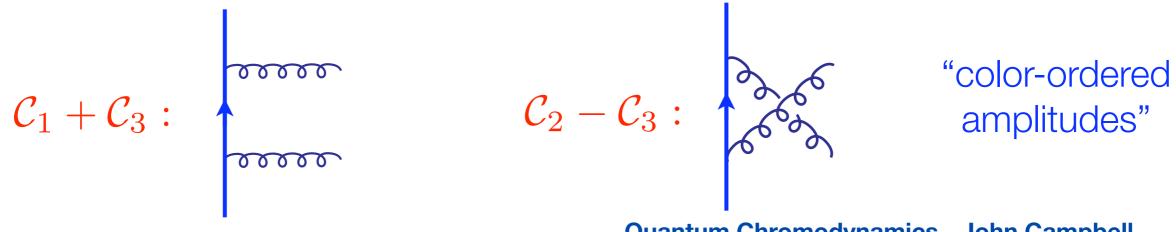


Simpler example

- quark+antiquark → W + 2 gluons is enough to see the main features.
 - in fact, we will drop the W in the pictures, since it is color-neutral.
- There are then three types of contribution, with the following color diagrams:

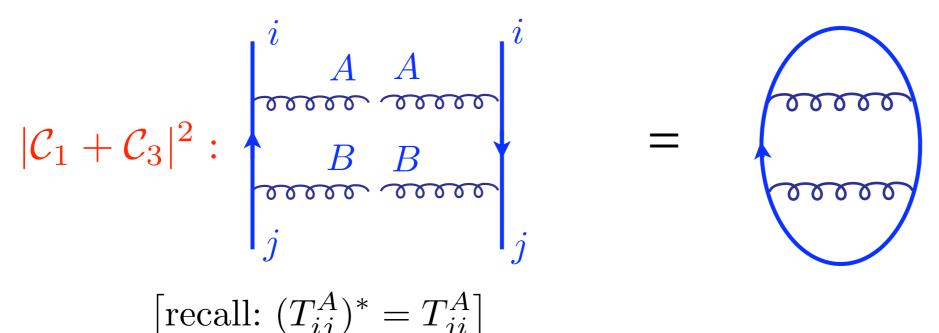


Hence we can already simplify our calculation to:



Color factors

To compute the cross section we need the amplitude squared.



Now we simplify using our pictorial rules:

$$= C_F \qquad = C_F \qquad = N_c C_F^2 \qquad (\text{same for } |\mathcal{C}_2 - \mathcal{C}_3|^2)$$

Color factors

• The interference term is a little more complicated (use Fierz).

$$(C_1 + C_3)(C_2 - C_3)^*:$$
 $= -\frac{1}{2N_c}$ $= -\frac{C_F}{2}$

• Sum all contributions, keeping one overall factor of C_F but expanding other.

$$\frac{N_c^2 C_F}{2} \left(|\mathcal{C}_1 + \mathcal{C}_3|^2 + |\mathcal{C}_2 - \mathcal{C}_3|^2 - \frac{1}{N_c^2} |\mathcal{C}_1 + \mathcal{C}_2|^2 \right)$$

this is the leadingcolor contribution sub-leading: does not contain any remnant of the triple-gluon diagrams (i.e. QED-like)

(color-ordered contributions)

HADRON PHYSICS SUMMER SCHOOL RESERVED RECAP

- The role of color in the theory of QCD is experimentally measurable.
 - good evidence for N_c =3.
- The Lagrangian of QCD is based on the SU(3) gauge group.
 - QCD interactions can be represented by a relatively short list of Feynman rules, which can be read off from the Lagrangian.
 - color leads to self-interaction between gluons (triple- and 4-gluon) vertices.
 - more profound differences between QCD and QED we will discuss later.
- Accounting for color is performed using Gell-Mann matrices, whose properties can be used to write amplitudes in terms of color factors C_F=4/3 and C_A=N_c=3.
 - a pictorial method for computing color factors is a handy tool.