100Gbits/s R&D at Fermilab

Gabriele Garzoglio
Grid and Cloud Computing Department
Computing Sector, Fermilab

OSG AHM – March 13, 2013

Overview

- Fermilab Network R&D
- 100G Infrastructure at Fermilab
- Results from the ESnet 100G testbed

Fermilab Users and 100G

- Using the network for decades in the process of scientific discovery for sustained, high speed, large and wide-scale distribution of and access to data
 - High Energy Physics community
 - Multi-disciplinary communities using grids (OSG, XSEDE)
- Figures of merit
 - 94 Petabytes written to tape, today mostly coming from offsite
 - 160Gbps peak LAN traffic from archive to local processing farms
 - LHC peak WAN usage in/out of Fermilab at 20-30 Gbps

Compact Muon Solenoid (CMS) routinely peaks at 20-30 Gbps for WAN traffic in/out of Fermilab.

94 PB of data ever written to the Enstore tape archive

Network R&D at Fermilab

- A diverse program of work that spans all layers of computing for scientific discovery
- A collaborative process benefitting from the effort of multiple research organizations
- A broad range of activities internally and externally funded

Pulling all R&D effort together from the top layers...

Providing tools & services to enable users / applications to optimize use of the network

- Collaborating with the OSG Network Area for the deployment of perfSONAR at 100 OSG facilities
- Aggregating and displaying data through E-Center and the OSG Dashboard for end-to-end hop-by-hop paths across network domains

Developing tools to monitor real-time 100G network traffic through multi-core architectures Proposed integration with Data Management through network-aware data source selection – CortexNET

ture / Network Layers 1-3

Seeking collaborators for network forecast module

Pulling all R&D effort together from the bottom layers...

Application-level R&D through the High Throughput Data Program

 Identifying gaps in data movement middleware for the applications used for scientific discovery – GridFTP, SRM, Globus Online, XRootD, Frontier / Squid, NFS v4

OS-level R&D on multicore-aware data transfer middleware

Optimizing network I/O for 40/100G environments
 Integrating local network infrastructure with WAN circuit technologies through policy-driven configuration (ESCPS)

Tools & Servi ces

A dedicated R&D Network facility

- 100G R&D
- Production-like env for tech eval
- Testing of firmware upgrades
- Nexus 7000 w/ 2-port 100GE module / 6-port 40GE module / 10GE copper module
- 12 nodes w/ 10GE Intel X540-AT2 (PCIe) / 8 cores / 16 GB RAM
- 2 nodes w/ 40GE Mellanox ConnectX®-2 (PCIe-3) / 8 cores w/ Nvidia M2070 GPU

* Diagram courtesy of Phil Demar

- Catalyst 6509E for 1GE systems
 - IPv6 tests / F5 load balancer / Infoblox DNS, Palo Alto firewall

Current Fermilab WAN Capabilities

- Metropolitan Area Network provides 10GE channels:
 - Currently 8 deployed
- Five channels used for circuit traffic
 - Supports CMS WAN traffic
- Two used for normal routed IP traffic
 - Backup 10GE for redundancy
 - Circuits fail over to routed IP paths

^{*} Diagram courtesy of Phil Demar

Near-Future Fermilab WAN Capabilities

- ESnet ChiExpress MAN:
 - One 100G channel
 - Circuit-based high impact science data traffic
 - Network R&D activities
 - Three 10G channels
 - For default routed IP traffic
 - Full geographic diversity within MAN
 - Production deployment in spring of 2013

Use of 100G Wave for FNAL R&D Test Bed

- 100G wave will support
 50G of CMS traffic
- Remaining ~50G for FNAL R&D network
 - Potentially higher when CMS traffic levels are low
- Planning WAN circuit into ESnet 100G testbed
 - Potential for circuits to other R&D collaborations

Goals of 100G Program at Fermilab

- Experiment analysis systems include a deep stack of software layers and services.
- Need to ensure these are functional and effective at the 100G scale end-to-end.
 - Determine and tune the configuration of all layers to ensure full throughput in and across each layer/service.
 - Measure and determine efficiency of the end-to-end solutions.
 - Monitor, identify and mitigate error conditions.

100G High Throughput Data Program

- 2011: Advanced Network Initiative (ANI) Long Island MAN (LIMAN) testbed.
 - GO / GridFTP over 3x10GE.
- 2011-2012: Super Computing '11
 - Fast access to ~30TB of CMS data in 1h from NERSC to ANL using GridFTP.
 - 15 srv / 28 clnt 4 gFTP / core;2 strms; TCP Win. 2MB

- 2012-2013: ESnet 100G testbed
 - Tuning parameters of middleware for data movement: xrootd, GridFTP, SRM, Globus Online, Squid. Achieved ~97Gbps
 - Rapid turn around on the testbed thank to custom boot images
 - Commissioning Fermilab Network R&D facility: 8.5 Gbps per 10G node
- Spring 2013: 100G Endpoint at Fermilab
 - Validate hardware link w/ transfer apps for CMS current datasets
 - Test NFS v4 over 100G using dCache (collab. w/ IBM research)

GridFTP / SRM / GlobusOnline Tests

- Data Movement using GridFTP
 - 3rd party Srv to Srv trans.: Src at NERSC / Dest at ANL
 - Dataset split into 3 size sets
- Large files transfer performance ~
 92Gbps
- Small files transfer optimizing performance
- Issues uncovered on ESnet 100G Testbed:
 - GridFTP Pipelining for list of files needs to be fixed on Globus implementation

Optimal performance: 97 Gbps w/ GridFTP 2 GB files – 3 nodes x 16 streams / node

GO control channel sent to the VPN through port forwarding

XRootD Tests

- Data Movement over XRootD, testing LHC experiment (CMS / Atlas) analysis use cases.
 - Clients at NERSC / Servers at ANL
 - Using RAMDisk as storage area on the server side
- Challenges
 - Tests limited by the size of RAMDisk
 - Little control over xrootd client / server tuning parameters

Dataset (GB)	1 NIC measurements (Gb/s)	Aggregate Measurements (12 NIC) (Gb/s)	Scale Factor per NIC	Aggregate estimate (12 NIC) (Gb/s)
0.512	4.5	46.9	0.87	_
1	6.2	62.4	0.83	_
4	8.7 (8 clients)	_	0.83	86.7
8	7.9 (4 clients)	_	0.83	78.7

Calculation of the scaling factor between 1 NIC and an aggregated 12 NIC for datasets too large to fit on the RAM disk

Squid / Frontier Tests

Data transfers

- Cache 8 MB file on Squid –
 This size mimics LHC use case for large calib. data
- Clients (wget) at NERSC / Servers at ANL
- Data always on RAM

Setup

- Using Squid2: single threaded
- Multiple squid processes per node (4 NIC per node)
- Testing core affinity on/off: pin Squid to core i.e. to L2 cache
- Testing all clnt nodes vs. all servers AND aggregate one node vs. only one server

Results

- Core-affinity improves performance by 21% in some tests
- Increasing the number of squid processes improves performance
- Best performance w/ 9000 clients: ~100 Gbps

Currently Working On...

GridFTP Small Files

- Optimizing transfers varying pipelining depth & concurrency

NFS v3 vs. v4

- Collaboration with IBM Research
- Mounting remote disks using NFS over 100G
- Validating dCache implementation of NFS v4
- Currently testing NFS v3—

Summary

- The Network R&D at Fermilab spans all layers of the communication stack
- Science discovery by HEP and Astrophysics drive the program of work
- Fermilab is deploying a Network R&D facility with 100G capability
- ESnet 100G Testbed has been fundamental for our middleware validation program
- Fermilab will have 100GE capability in the Spring 2013
 - Planning to participate in the ESnet 100G Testbed

