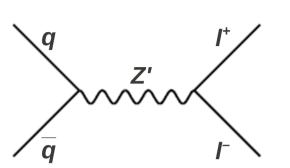
New physics searches with dileptons and diphotons at ATLAS


Martina Hurwitz Lawrence Berkeley National Laboratory On behalf of the ATLAS collaboration

> SEARCH conference University of Maryland March, 2012

Introduction

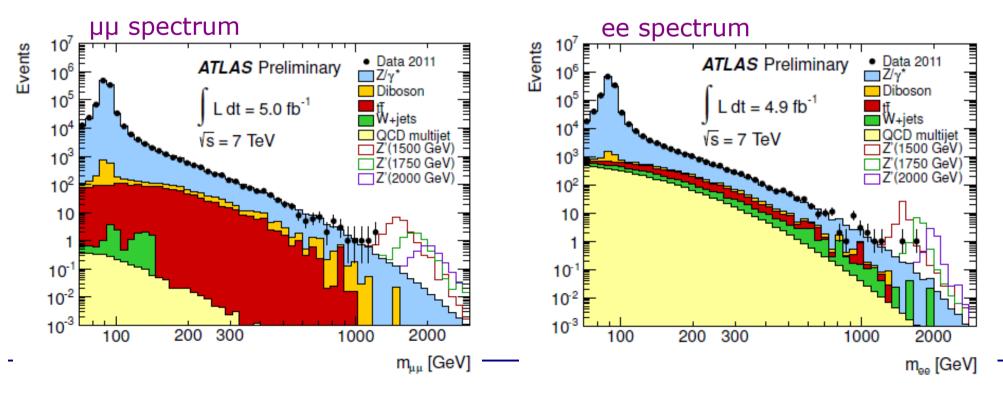
- Will go through several recent results
 - Searches in dilepton mass spectrum
 - Search for high-mass dilepton resonances: 5 fb⁻¹
 - Search for techni-hadrons: 1 fb⁻¹
 - Search for contact interactions: 1 fb⁻¹
 - Search for excited leptons in II γ : 5 fb⁻¹
 - Searches for anomalous like-sign lepton production
 - Inclusive search: 1 fb⁻¹
 - Search for like-sign top quark production: 1 fb⁻¹
 - Search for strong gravity signatures: 1 fb⁻¹
 - Search for extra dimensions in diphoton events: 2 fb⁻¹
- ATLAS has many other related results which are covered by other speakers here

High-mass dilepton resonances: introduction

- Several models predict new resonances decaying to pairs of charged leptons
 - Spin-1 benchmarks: Z' in Sequential Standard Model or E_6 grand unified symmetry group
 - Spin-2 benchmark: Graviton in Randall-Sundrum models
 - For both, width is narrow w.r.t. detector resolution
- Searches at ATLAS in ee and $\mu\mu$ final states updated with 5 fb⁻¹ ATLAS-CONF-2012-007
- Expect very high- p_{τ} leptons from this signal
 - No SM process with which to calibrate these
 - Need to understand detector and simulation
 - Impose tight selection cuts to assure optimal resolution
 - For muons, require hits in three stations of Muon Spectrometer in most of detector region
 - Reduces muon acceptance
 - New in 5 fb⁻¹: some two-station tracks allowed in well-understood detector regions

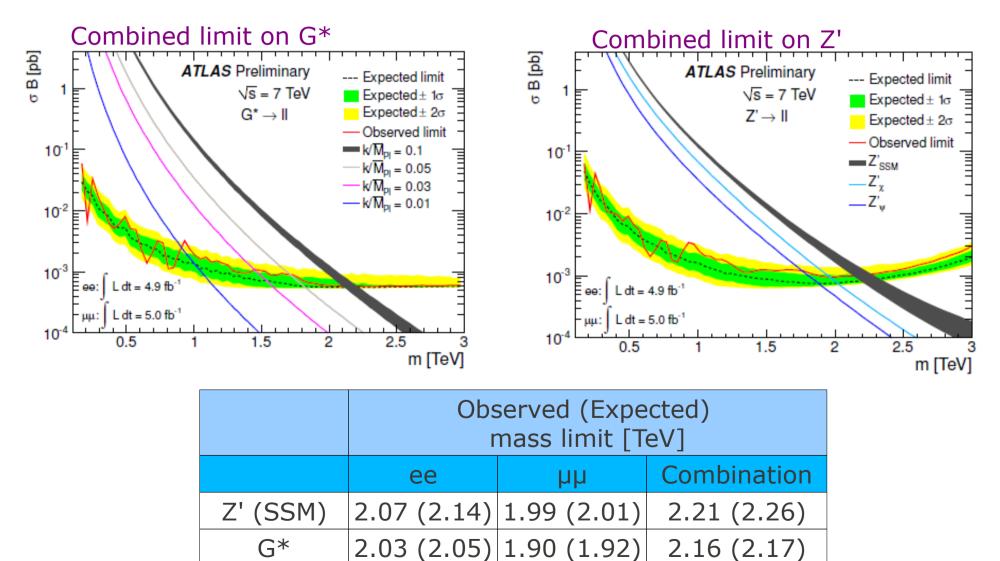
High-mass dilepton resonances: selection

Muons

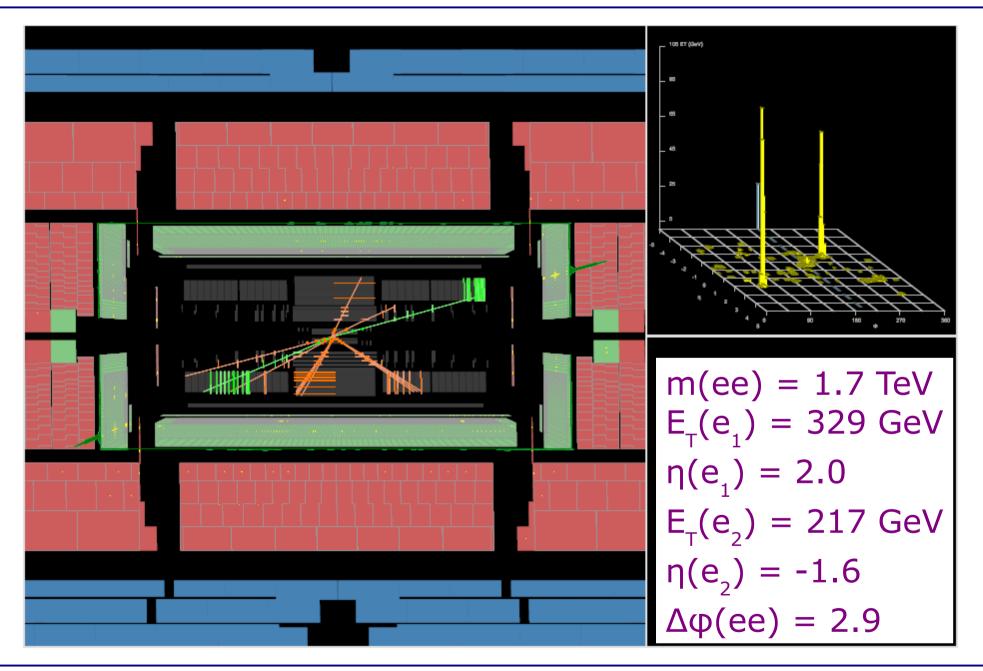

- Trigger: one muon with p_T>22 GeV
- p_τ(μ) > 25 GeV, |η(μ)| < 2.5
- Muons with combined ID and MS tracks, plus extra hit requirements in MS
- Both muons isolated: $\Sigma p_{\rm T}(\Delta R < 0.3)/p_{\rm T}(\mu) < 0.05$
- Muons must have opposite charges
- Acceptance * efficiency
 - Z' (2 TeV) → μμ: 43%
 - G* (2 TeV) → μμ: 47%

Electrons

- Trigger: two EM clusters with $E_{T} > 20 \text{ GeV}$
- E_τ(e) > 25 GeV, |η(e)| < 2.47
 - Excluding crack
 1.37<|η(e)|<1.52
- "Medium" electrons (shower shape and track matching cuts)
- Higher-p_T electron isolated: $\Sigma E_{\rm T}(\Delta R < 0.2) < 7 \, {\rm GeV}$
- No charge requirement
- Acceptance * efficiency - Z' (2 TeV) \rightarrow ee: 71%
 - G* (2 TeV) → ee: 72%

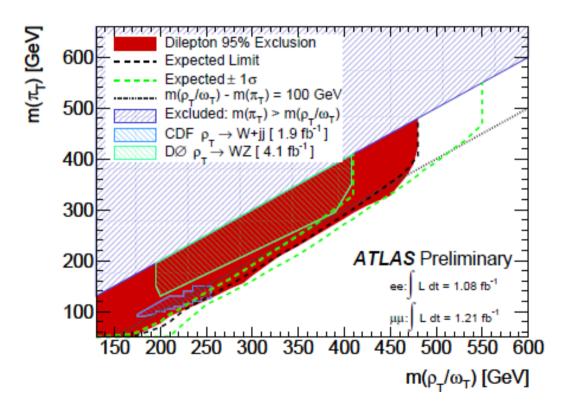

High-mass dilepton resonances: backgrounds

- Dominant background: Z/γ*: estimated from LO Monte Carlo with mass-dependent NNLO/LO K-factors applied
 - Total background normalized to data in Z peak
- Dominant systematic uncertainty: PDF and scale uncertainties on background shape: ~20% at 2 TeV
- Search strategy: compare dilepton mass to background and signal templates

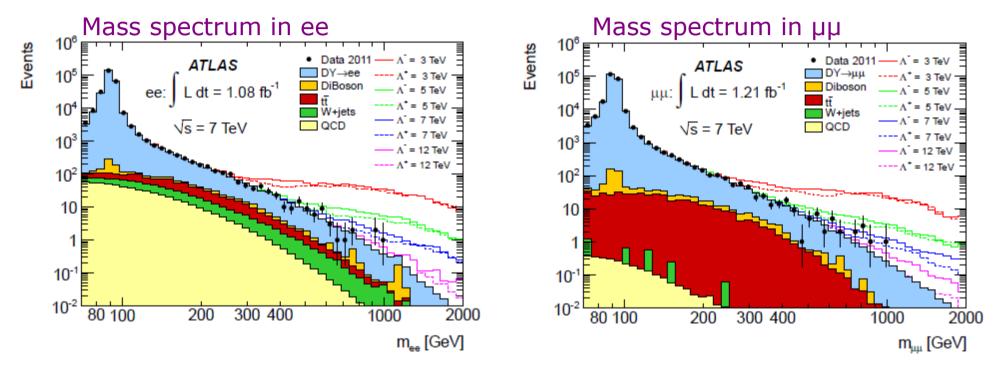


High-mass dilepton resonances: interpretation

- Derive upper limits on $\sigma^*B.R.$ in each channel and combined
 - Translate to lower mass limit for benchmark models

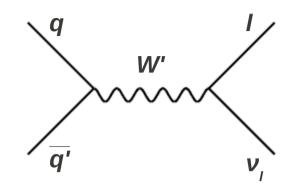


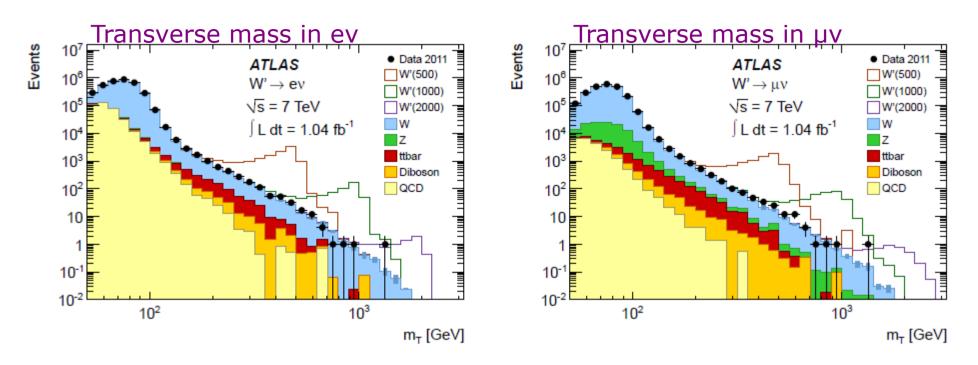
Highest-mass dilepton event


Techni-hadrons

- Apply limits from Z' to another spin-1 resonance
 - Low-scale technicolor model: degenerate techni-ρ and techni-ω decaying to charged lepton pairs
 - A*ɛ are shown to be the same as for the Z'
- Result for ee and µµ channels in ~1 fb⁻¹: ATLAS-CONF-2011-125

Contact interaction

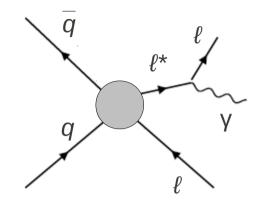

- Same data sample as Z' search
- Result for ee and $\mu\mu$ channels in ~1 fb⁻¹: arXiv:1112.4462


	Observed (Expected) limit on A[TeV]				
	Constructive Destructive				
e⁺e⁻	10.1 (9.6)	9.4 (9.3)			
µ⁺µ⁻	8.0 (8.9) 7.0 (8.6)				
Combined	10.2 (10.4)	8.8 (10.1)			

Heavy gauge boson decaying to lv

- Various extensions of SM predict heavy charged boson decaying to charged lepton and neutrino (W')
- ATLAS searched for W' \rightarrow ev and W' \rightarrow µv
 - Most recent result from ~1 fb⁻¹: arXiv:1108.1316

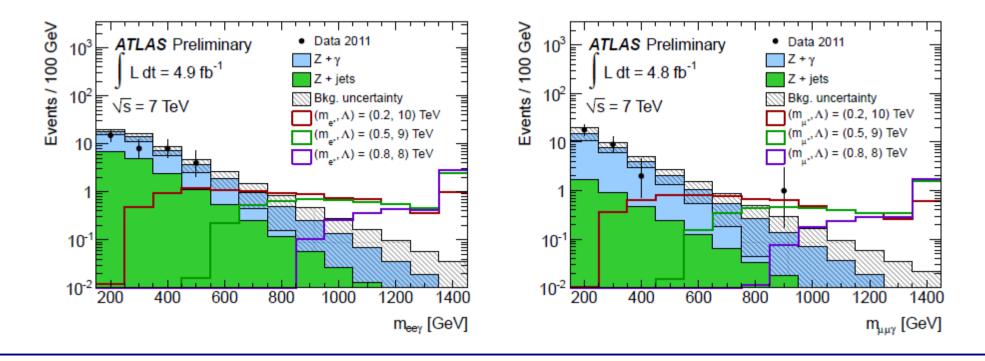
- Event selection: electron or muon plus missing transverse energy
 - $_{-}$ p_T(µ) > 25 GeV, E_T(e) > 25 GeV, MET > 25 GeV
 - Leptons must be isolated
 - As in Z' search, strict muon hit requirements
 - For electrons, MET > $0.6 \times E_{T}(e)$
 - $_{-}$ Lower threshold on $m_{_{\! T}}(W)$ dependent on mass of W'
- A*ε depends on mass of W'
 - Between 33% and 54% for electron channel
 - Between 22% and 37% for muon channel



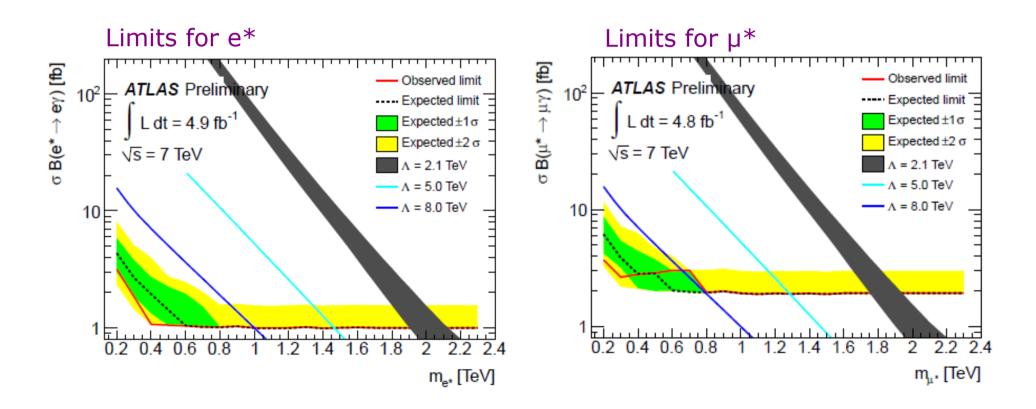
- No significant deviation from SM expectations
- Limit based on counting events above certain m_r threshold
 - Threshold optimized for each W' mass
 - e.g. for m(W') = 2 TeV, threshold = 1.122 TeV
- Set limits on W' in Sequential Standard Model

	$m_{W'}$	[TeV]
	Exp.	Obs.
$e\nu$	2.17	2.08
μu	2.08	1.98
both	2.23	2.15

Excited leptons: motivation and selection


- Excited leptons occur if leptons are composite objects
 - Produced via qql*l contact interactions
 - Can decay $I^* \rightarrow I\gamma$, B.R. decreases with $m(I^*)$
- Search at ATLAS for $ee^* \rightarrow ee\gamma$ and $\mu\mu^* \rightarrow \mu\mu\gamma$

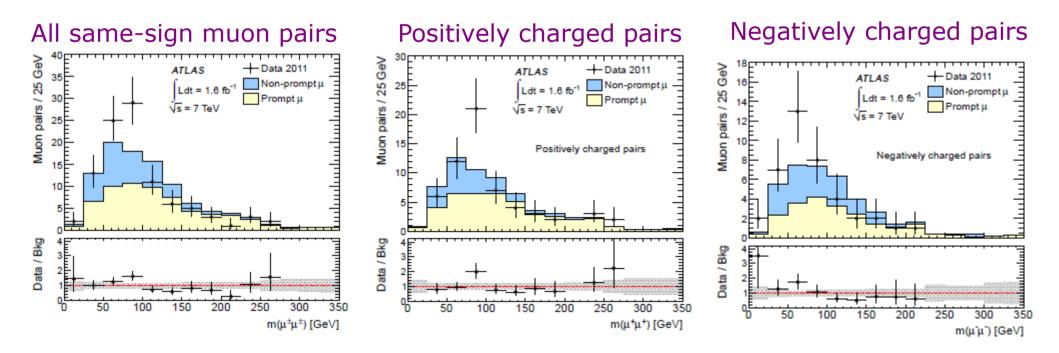
- Result with 5 fb⁻¹: ATLAS-CONF-2012-008
- Event selection: two electrons or muons and a photon
 - $p_T(\mu) > 25 \text{ GeV}, E_T(e) > 25 \text{ GeV}, p_T(\gamma) > 40 \text{ GeV}$
 - Leptons and photons must be isolated and separated from each other
 - m(II) > 110 GeV
- Acceptance times efficiency
 - $\sim 55\%$ in ee γ channel for m(l*) > 800 GeV
 - $\sim 30\%$ in $\mu\mu\gamma$ channel for m(l*) > 800 GeV


Excited leptons: backgrounds

- Dominant background: Zγ
 - Simulated with Sherpa
 - $m(II\gamma)$ -dependent NLO / LO K-factor applied
- Dominant uncertainty is on background shape prediction
 - Parameterization based on limited MC statistics
- Strategy: counting experiment in m(IIγ) > m(I*)+150 GeV

Excited leptons: limits

- Set upper limit on cross-section times branching ratio of excited leptons
 - For m(l*)>0.9 TeV, $\sigma B(e^*) < 1.0$ fb, $\sigma B(\mu^*) < 1.9$ fb
- Can also interpret this as exclusion region in m(l*)-Λ plane
 - For $m(l^*) = \Lambda$, $m(e^*) > 2.0$ TeV, $m(\mu^*) > 1.9$ TeV



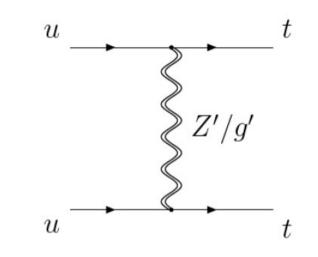
Inclusive like-sign dimuons: introduction

- Search for anomalous production of like-sign muon pairs
 - No optimization for specific model
 - Like-sign muons are clean final state without further selections
- 1.6 fb⁻¹ result: arXiv:1201.1091
- Event selection: two like-sign muons
 - $p_{T}(\mu) > 20 \text{ GeV}, |\eta(\mu)| < 2.5$
 - Search focused on lower-p₁ muons than previous searches → don't have stringent hit requirements in MS
 - Both muons required to be isolated and have low impact parameter significance
 - $\Sigma p_{T}(\Delta R < 0.4) / p_{T}(\mu) < 0.08 \text{ and } \Sigma p_{T}(\Delta R < 0.4) < 5 \text{ GeV}$
 - Very tight requirements because muons from b/c-hadron decay are large background

Inclusive like-sign dimuons: backgrounds

- "Prompt" SM production: mostly WZ \rightarrow IvII
 - Herwig with mass-dependent NLO / LO K-factors
- "Non-prompt" production: events where one or more muons from b/c or pi/K decay
 - Shape and normalization derived in data-driven way by loosening isolation requirements

Inclusive like-sign dimuons: interpretation


- Fiducial cross-section limit
 - Define fiducial region at particle level
 - Limit on cross section for new physics contributing to that region
- There is a model-dependent reconstruction efficiency for muon pairs in true fiducial region
 - $_-$ Mostly due to $p_{\!_{\rm T}}$ -dependent isolation efficiency
 - Derive efficiency for several different models
 - Clean, high-pT models, e.g. doubly charged Higgs or right-handed W decaying to heavy Majorana neutrino: ε>70%
 - Busy, low-pT model, e.g. like-sign top quark production: $\epsilon \sim 44\%$
 - Conservative fiducial limit is derived from lowest efficiency

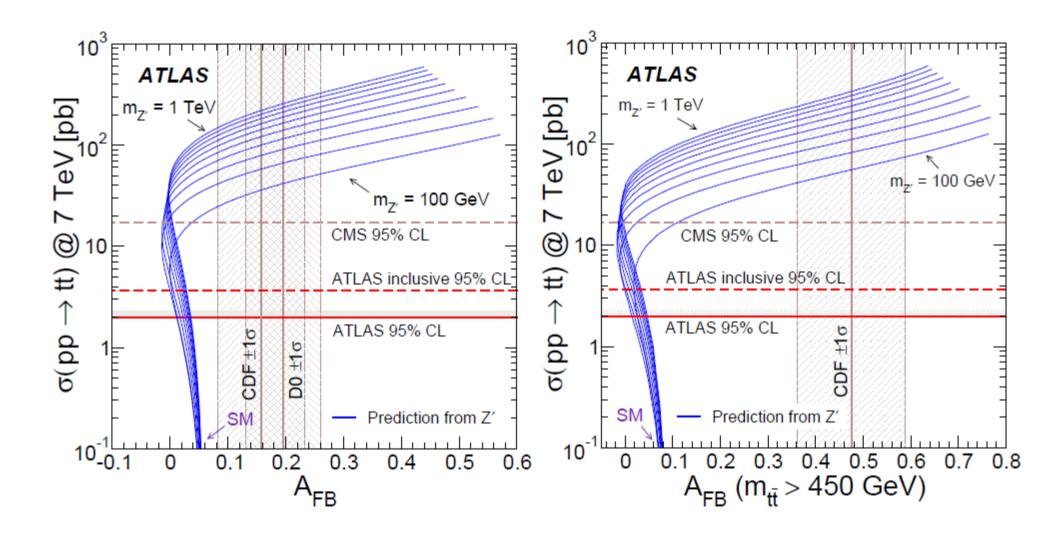
Mass range [GeV]	σ_{95}^{fid} [fb] expected observed						
All muon pairs							
$m(\mu^{\pm}\mu^{\pm}) > 15$	58^{+19}_{-17}	58					
$m(\mu^\pm\mu^\pm)>100$	30^{+11}_{-9}	16					
$m(\mu^{\pm}\mu^{\pm}) > 200$ $m(\mu^{\pm}\mu^{\pm}) > 300$	$13.7\substack{+5.7\\-4.4}$	8.4					
$m(\mu^\pm\mu^\pm)>300$	$8.0^{+3.3}_{-2.6}$	5.3					

- Limits derived for all like-sign muon pairs and separately for ++ and -pairs in four invariant mass ranges
- Limits can be applied to other models
 - Just need to derive acceptance for true fiducial region

Inclusive like-sign dimuons: limits on same-sign top

- Use previous fiducial cross-section limit to determine limit on same-sign top quark production
 - Example of using fiducial limits; dedicated analysis (next slides) has stronger limit
- Same-sign top quarks could be produced via flavor-changing Z'

- Possible explanation of $A_{_{\mathrm{FB}}}$ in $t\bar{t}$ at Tevatron
- Use particle-level simulation to determine acceptance for this model within true fiducial region

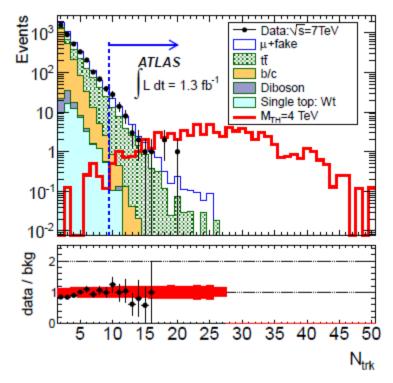

$\sigma_{95}^{fid}(\mu\mu)$	
$\sigma_{95} = \frac{1}{A_{fid}}$	
1-j iu	

m(Z')	$\sigma_{95}(t_R t_R)$ [pb]				
m(2)	expected	observed			
$100 { m GeV}$	$4.2^{+2.3}_{-0.9}$	3.7			
$150~{\rm GeV}$	$3.3^{+1.9}_{-0.7}$	3.0			
$200 {\rm GeV}$	$2.9^{+1.6}_{-0.6}$	2.6			
$\gg 1 { m TeV}$	$2.5^{+1.4}_{-0.5}$	2.2			

Like-sign top quarks: dedicated search

- Event selection: same-sign leptons plus ≥ 2 jets plus MET
 - Presented yesterday in search for heavy quarks
 - e^+e^+ , $e^+\mu^+$, $\mu^+\mu^+$ channels
 - $E_{T}(e) > 25 \text{ GeV}, p_{T}(\mu) > 20 \text{ GeV}, p_{T}(jet) > 20 \text{ GeV}, MET > 40$
 - In ee and $\mu\mu$ channels, |m(Z)-m(II)|>10 GeV
 - Low-mass Z' signal region: H_{T} >150 GeV and m(II) > 100 GeV High-mass Z' signal region: H_{T} >350 GeV
- A*ε*B.R. ~ 0.8%

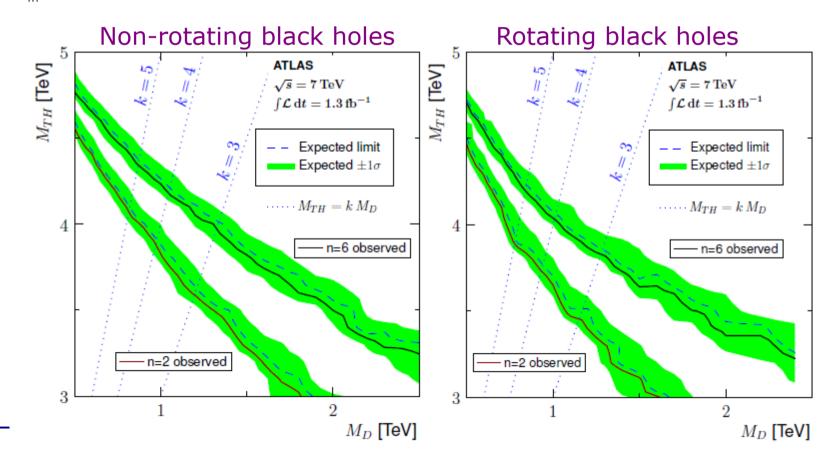
	e^+e^+	$e^+\mu^+$	$\mu^+\mu^+$				
	m(ll) > 100 GeV,						
	H_T	> 150 G	eV				
Total BG	$3.0^{+1.3}_{-1.0}$	$9.6^{+3.0}_{-3.9}$	$3.7^{+1.6}_{-1.6}$				
Data	9	0	4				
Data	3	8	4				
Data	$\frac{3}{H_T}$	$\frac{8}{300}$ G	4 eV				
Total BG	$\frac{3}{H_T}$ $3.0^{+1.0}_{-1.6}$	$\frac{8}{8.1^{+2.5}_{-3.6}}$	$\frac{4}{2.6^{+0.9}_{-1.1}}$				



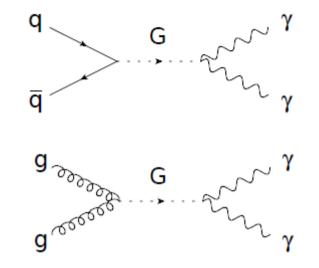
Strong gravity in same-sign dimuons

- Some models of extra dimensions result in microscopic black holes at the LHC
 - Decay into large numbers of high- p_{T} particles
- 1.3 fb⁻¹ result: arXiv:1111.0080
- Event selection: two same-sign muons and ten or more tracks
 - $p_T(\mu_1) > 25 \text{ GeV}, |\eta(\mu_1)| < 2.4$
 - $p_{T}(\mu_{2}) > 15 \text{ GeV}, |\eta(\mu_{2})| < 2.4$
 - Only higher-p_{τ} muon is required to be isolated and have small impact parameter significance
 - $\Sigma p_T(\Delta R < 0.2) / p_T(\mu_1) < 0.2$
 - No requirement on second muon increases signal acceptance due to large number of muons from hadronic decay in signal
 - $p_{T}(track) > 10 \text{ GeV}, |\eta(track)| < 2.4$
 - Ten or more tracks, including the two muon candidates

Strong gravity in same-sign dimuons: backgrounds

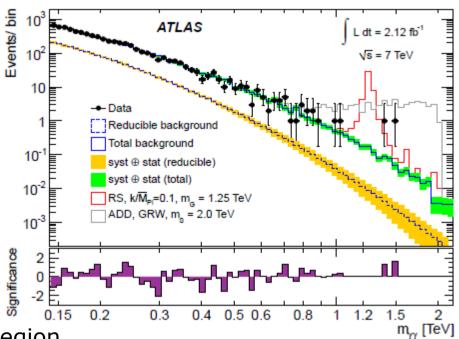

- Two dominant backgrounds in signal region: tt and µ+fake
- tt determined from NLO MC
- µ+fake dominated by W plus heavy flavor production
 - Estimated in data-driven way
 - Select W+track sample, estimate probability for track to fake µ
- Uncertainty on tt
 ISR/FSR, top quark mass, tt
 cross section, and generator used
- Uncertainty on µ+fake: subtraction of correlated backgrounds from region where fake rate is estimated

Process	Events
tī	29.2 ± 4.2
µ+fake	25.6 ± 5.2
Other	1.0 ± 0.8
Total prediction	55.8 ± 6.8
Data	60

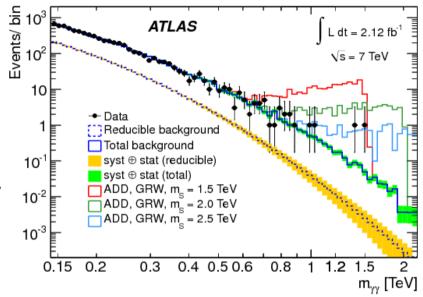

Strong gravity in same-sign dimuons: limits

- 60 events observed in signal region, 56 predicted
 - Upper limit on σ * B.R. * A is 0.018 pb
- Interpreted as exclusion contours in $M_D M_{TH}$ plane
 - M_n is Planck scale in n+4 dimensions
 - M_{TH} is lower limit on black hole mass

Extra dimensions in diphotons: introduction


- Search for Gravitons decaying to photon pairs in ADD and RS models of extra dimensions
- Recent result from ATLAS with 2 fb⁻¹: arXiv:1112.2194

- Event selection: two photons
 - Trigger on two photons with E_{T} >20 GeV
 - $E_{T}(\gamma) > 25 \text{ GeV}, |\eta(\gamma)| < 2.37$
 - Photons must be isolated: $\Sigma E_{T}(\Delta R < 0.4) < 5 \text{ GeV}$
 - $m(\gamma\gamma) > 140$


Extra dimensions in diphotons: backgrounds

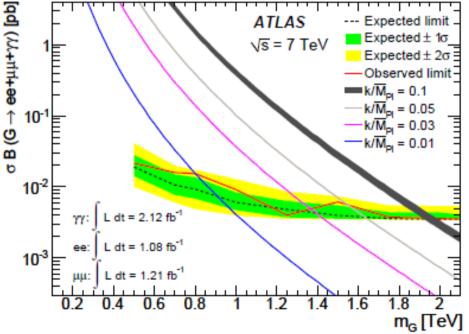
- Dominant background: SM γγ
 - Estimated from MC, reweighting Pythia to NLO cross sections from DIPHOX
- Second background: γ+jet
 - Shape taken from data samples where one or both photons fail some identification criteria
 - Shape extrapolated to high-mass region
- Total background normalized to data in 140<m(γγ)<400 GeV region
- Systematic uncertainty on background shape
 - Variation of scale and PDFs in γγ prediction
 - Use of different control samples for γ +jet shape
 - Fraction of γ +jet contribution
 - Total uncertainty: ~2% at 140 GeV up to ~20% above 2 TeV

Extra dimensions in diphotons: ADD limits

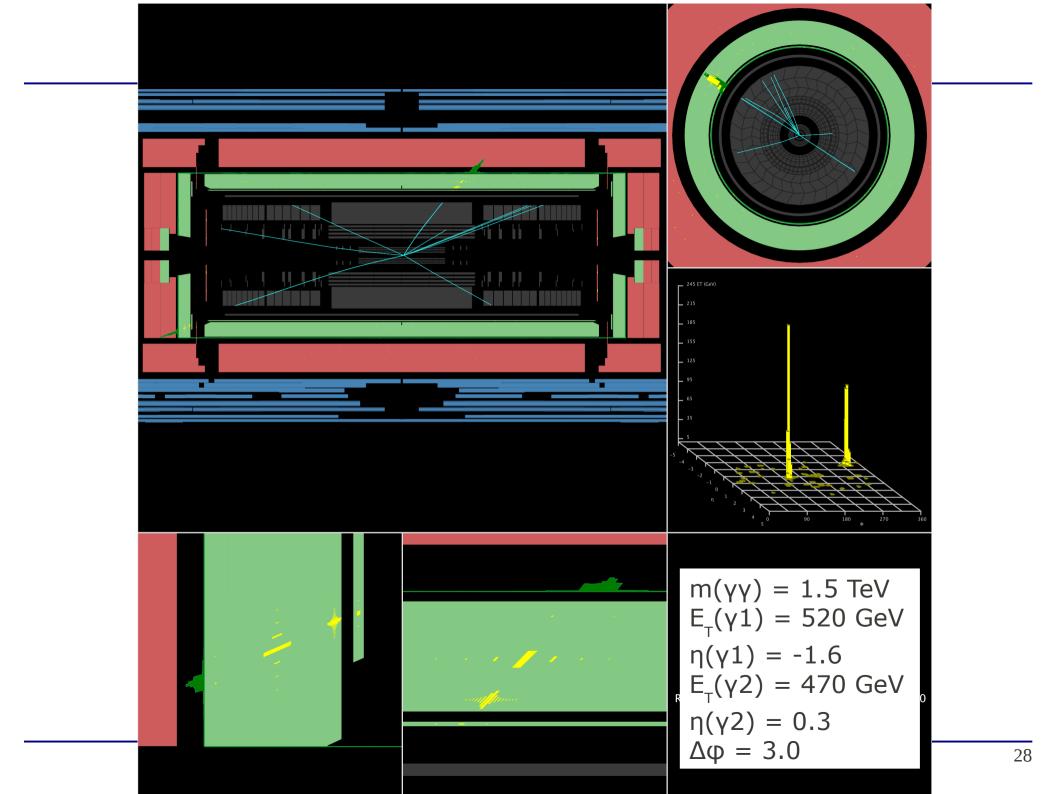
- Expect nearly continuous spectrum of KK Gravitons
 - Search for general excess rather than resonance
 - Acceptance: 15-20%, ε ~70%
- Count events with $m(\gamma\gamma)>1.1$ TeV
 - Two events observed, 1.33±0.26 background events expected
 - Upper limit on $\sigma^*A^*\epsilon = 2.49$ fb

Limit on effective scale in ADD depends on model convention

 $\frac{d^2\sigma}{Md\cos\theta^*} = f_{\rm SM} + f_{\rm int}\eta_G + f_{\rm KK}\eta_G^2$


$$\mathcal{F} = 1, \text{ (GRW)}$$
$$\mathcal{F} = \begin{cases} \log\left(\frac{M_S^2}{\hat{s}}\right) & n = 2\\ \frac{2}{n-2} & n > 2 \end{cases}, \text{ (HLZ)}$$
$$\mathcal{F} = \pm \frac{2}{\pi}, \text{ (Hewett)}$$

Limits on M_{s} (in TeV):


k-factor	GRW	Hewett		HLZ				
Value		Pos	Neg	n = 3	n = 4	n = 5	n = 6	n = 7
1	2.73	2.44	2.16	3.25	2.73	2.47	2.30	2.17
1.70	2.97	2.66	2.27	3.53	2.97	2.69	2.50	2.36

Extra dimensions in diphotons: RS limits

- Resonance: A * ε = 53-60%
- Derive limit by doing template fit in $m(\gamma\gamma) > 500$ GeV to expected background plus signal
- Combine these results with resonance search in ee and µµ channels
 - 1 fb⁻¹ version of dilepton analysis shown earlier in talk

	Mass limit [TeV]						
	<i>k/M_{Pl}</i> value						
	0.01 0.03 0.05 0.10						
$G \rightarrow \gamma \gamma$	0.74	1.26	1.41	1.79			
$G \rightarrow \gamma \gamma / ee/\mu \mu$	0.76	1.32	1.47	1.90			

Conclusions

- ATLAS is searching for new physics in final states with charged lepton pairs or photon pairs
 - Z' and excited lepton searches have been updated with 5 fb⁻¹
 - Several other results with smaller data samples have been released in recent months
- No deviation from Standard Model predictions has been observed yet
- The search continues
 - Many channels working toward result with full 7 TeV data sample
 - Looking forward to higher energy and larger sample this year!

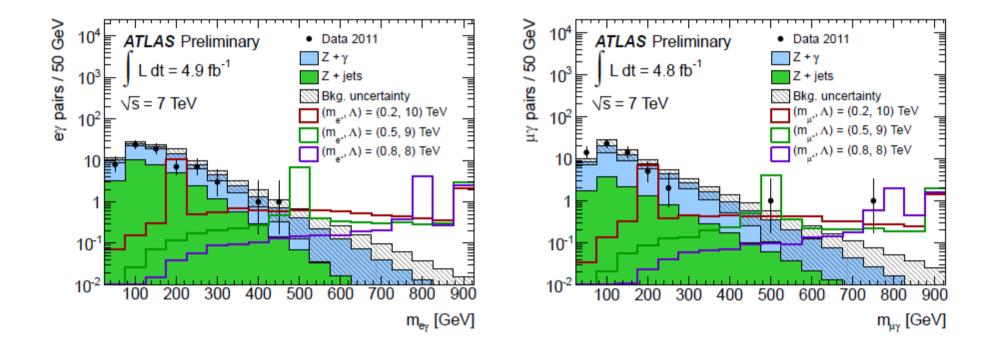
Contact interaction in dileptons

• General contact interaction: $\mathcal{L} = \frac{g^2}{2\Lambda^2} \begin{bmatrix} \eta_{LL} \ \overline{\psi}_L \gamma_\mu \psi_L \ \overline{\psi}_L \gamma^\mu \psi_L \\ + \eta_{RR} \ \overline{\psi}_R \gamma_\mu \psi_R \ \overline{\psi}_R \gamma^\mu \psi_R \\ + 2\eta_{LR} \ \overline{\psi}_L \gamma_\mu \psi_L \ \overline{\psi}_R \gamma^\mu \psi_R \end{bmatrix}$

• "LLIM":
$$\eta_{LL} = \pm 1$$
, $\eta_{RR} = \eta_{LR} = 0$
- Differential cross section: $\frac{d\sigma}{dm_{\ell\ell}} = \frac{d\sigma_{DY}}{dm_{\ell\ell}} - \eta_{LL}\frac{F_I(m_{\ell\ell})}{\Lambda^2} + \frac{F_C(m_{\ell\ell})}{\Lambda^4}$
Interference term:
important at high Λ

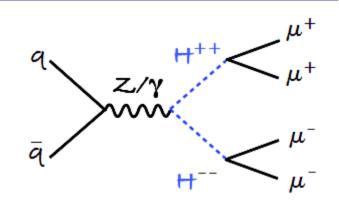
- Destructive interference: $\eta_{_{II}} = +1$, limit on Λ^{+}
- Destructive interference: $\eta_{II} = -1$, limit on Λ^{-1}
- Allowing all quark flavors to contribute to contact interaction
- Strong limits on qqee from LEP; only LHC can constrain $qq\mu\mu$
 - qqee from LEP: Λ^+ > 12.9 TeV, Λ^- > 7.2 TeV

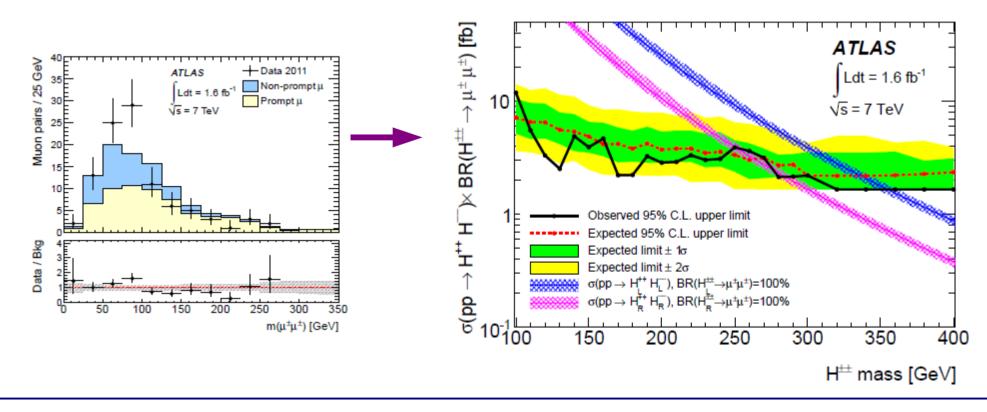
ATLAS Exotics Searches* - 95% CL Lower Limits (Status: March 2012)


Mass scale [TeV]

	Large ED (ADD) : monojet	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 ТөУ	1 _ρ (δ=2)	
	Large FD (ADD) · diphoton	L=2.1 fb ⁻¹ (2011) [1112.2194]		GRW cut-off)	ATLAS
10	UED : $\gamma\gamma + E_{\tau, miss}$	L=1.1 fb ⁻¹ (2011) [1111.4116]	1.23 TeV Compact. sca		Preliminary
suo	RS with $k/M_{\rm Pl} = 0.1$: diphoton, $m_{\rm yy}$	L=2.1 fb ⁻¹ (2011) [1112.2194]	1.85 TeV Graviton		. I Constant of y
nsi	RS with $k/M_{\rm Pl} = 0.1$: dilepton, $m_{\rm H}$	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.16 TeV Gravito	0 0000	
me	RS with $k/M_{Pl} = 0.1$: ZZ resonance, $m_{IIII / IIII}$	L=1.0 fb ⁻¹ (2011) [1203.0718]	845 Gev Graviton mass	Ldt	= (0.04 - 5.0) fb ⁻¹
Extra dimensions	RS with g /g =-0.20 : tt \rightarrow I+jets, m_{\perp}	L=2.1 fb ⁻¹ (2011) [ATLAS-CONF-2012-029]	1.03 TeV KK gluon mass	5	= (0.04 - 5.0) fb ⁻¹ s = 7 TeV
xtra	RS with g / g =-0.20 : tt \rightarrow I+jets, m ADD BH (M_{TH}^{qqKK}/M_{D}^{s} =3) : multijet, Σp_{τ} , N_{jets}^{tt}	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068]	1.37 ΤeV M _D (δ=6)		
Ш	ADD BH $(M_{\text{TH}}/M_{\text{D}}=3)$: SS dimuon, $N_{\text{ch. part.}}$	L=1.3 fb ⁻¹ (2011) [1111.0080]	1.25 TeV M _D (δ=6)		
	ADD BH $(M_{TH}/M_{D}=3)$: leptons + jets, Σp_{T}	L=1.0 fb ⁻¹ (2011) [ATLAS-CONF-2011-147]	1.5 TeV M _D (δ=6)		
	Quantum black hole : dijet, F (m_{ij})	L=4.7 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]		<i>M_D</i> (δ=6)	
	qqqq contact interaction : $\chi(m_{ij})$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]		7.8 TeV Λ	
CI	qqll CI : ee, $\mu\mu$ combined, \vec{m}_{μ}	L=1.1-1.2 fb ⁻¹ (2011) [1112.4462]		10.2 TeV Λ (constr	ructive int.)
	uutt CI : SS dilepton + jets + $E_{T min}$	L=1.0 fb ⁻¹ (2011) [1202.5520]	1.7 TeV Δ		<i>,</i>
2	SSM Z' : m _{ee/uu}	L=4.9-5.0 fb ⁻¹ (2011) [ATLAS-CONF-2012-007]	2.21 TeV Z' mas	s	
7	SSM W': m _{T,e/u}	L=1.0 fb ⁻¹ (2011) [1108.1316]	2.15 TeV W' mas	ss	
G	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=1.0 fb ⁻¹ (2011) [1112.4828]	660 Gev 1st gen. LQ mass		
L(Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu$ jj, $\mu\nu$ jj	L=1.0 fb ⁻¹ (2011) [Preliminary]	685 Gev 2 nd gen. LQ mass		
ŝ	4^{th} generation : Q $\overline{Q} \rightarrow WqWq$	L=1.0 fb ⁻¹ (2011) [1202.3389] 350 GeV	Q₄ mass		
ark	4 th generation : u , , WbWb		u mass		
nb	4 th generation : d d → WtWt	L=1.0 fb ⁻¹ (2011) [Preliminary] 480 (aev d₄ mass		
New quarks	New quark b' : b'b'→ ⁴ Zb+X, m _{zb}		b' mass		
		L=1.0 fb ⁻¹ (2011) [1109.4725] 420 Ge	T mass (m(A ₀) < 140 GeV)		
ferm.	$TT_{exo, 4th een} \rightarrow tt + A_0A_0 : 1-lep + jets + E_{T,miss}$ Excited quarks : γ -jet resonance, m_{viet}	L=2.1 fb ⁻¹ (2011) [1112.3580]	2.46 TeV q* M	ass	
fei	Excited quarks : dijet resonance, mi	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	3.35 TeV	* mass	
clt.	Excited electron : e-γ resonance, m ["] _{eγ}	L=4.9 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	2.0 TeV e* mass	$\delta (\Lambda = m(e^*))$	
Ē	Excited muon : μ-γ resonance, m	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-023]	1.9 TeV μ [≭] mass	$(\Lambda = M(\mu^*))$	
	Techni-hadrons : dilepton, m	L=1.1-1.2 fb ⁻¹ (2011) LATLAS-CONF-2011-1251 470 G	ev ρ_/ω _T mass (<i>m</i> (ρ_/ω _T) - <i>m</i> (π	_τ) = 100 GeV)	
	Techni-hadrons : WZ resonance (vIII), $m_{\tau,WZ}^{ee/\mu\mu}$	L=1.0 fb ⁻¹ (2011) [Preliminary] 483 ($p_{\perp} mass (m(\rho_{\perp}) = m(\pi_{\perp}) + n$		
	Major. neutr. (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	1.5 TeV N mass (m	W_) = 2 TeV)	
her	W _R (LRSM, no mixing) : 2-lep + jets	L=2.1 fb ⁻¹ (2011) [Preliminary]	2.4 TeV W _R I	nass (m(N) < 1.4 GeV)	
5	H_{L}^{**} (DY prod., BR($H_{L}^{**} \rightarrow \mu\mu$)=1) : SS dimuon, $m_{\mu\mu}$	L=1.6 fb ⁻¹ (2011) [1201.1091] 355 GeV	H ^{±+} mass		
	Color octet scalar : dijet resonance, $\ddot{m}_{ m ji}$	L=4.8 fb ⁻¹ (2011) [ATLAS-CONF-2012-038]	1.94 TeV Scalar r	esonance mass	
	Vector-like quark : CC, m	L=1.0 fb ⁻¹ (2011) [1112.5755]	900 GeV Q mass (coupling)	$c_{qQ} = v/m_Q$	
	Vector-like quark : NC, m _{llg}	L=1.0 fb ⁻¹ (2011) [1112.5755]	760 GeV Q mass (coupling Kq0		
		10 ⁻¹	1	10	104
			-		

*Only a selection of the available mass limits on new states or phenomena shown


	$E_6 Z'$ models							RS gr	aviton	
Model/Coupling	Z'_{ψ}	Z'_N	Z'_n	Z'_I	Z'_S	Z'_{χ}	0.01	0.03	0.05	0.1
Mass limit [TeV]	1.76	1.78	1.84	1.84	1.90	1.96	0.91	1.45	1.71	2.16


$m(I\gamma)$ mass spectrum for excited leptons

Inclusive like-sign dimuons: limits on $H^{\pm\pm}$

- In same data sample with same background estimate, search in narrow mass bins for resonance
 - Benchmark model is pair production of doubly charged Higgs bosons
- Lower mass limits:
 - $_{-}$ 355 GeV for $H_{_{\rm I}}^{~\pm\pm}$ with 100% B.R. to $\mu\mu$
 - $_{-}$ 251 GeV for $H_{_{R}}^{^{\pm\pm}}$ with 100% B.R. to $\mu\mu$

