Bi-2212 Textured Powder Conductor Recent Developments

Feng Lu, Al McInturff, Peter McIntyre Texas A&M University Kyle Damborsky Accelerator Technology Corp. – Phase 1 SBIR Natanette Craig, Eric Hellstrom, Jianyi Jiang, Patrick Noyes, Bill Starch NHMFL Lesh Motowidlo Supramagnetics

Purpose of Pre-Texturing

- Enhance J_e by aligning High-J_c ab planes
 70% texture in green billet
- Open possibility for *non-melt heat treatment*
 - inter-grain connectivity without melt
 - nearly phase-pure Bi-2212 after non-melt HT
 - widen processing windows: 870 \pm 10 C
 - 90% texture after non-melt heat treatment
 - ~85% dense after non-melt heat treatment

Outline

- Summary of Phase 1 results:
 - Demonstration of ability to texture in bulk
 - Developed (not optimized) non-partial melt HT
 - Initial transport measurements
- Recent developments
 - Evidence of preferential shear
 - Low current, high temp measurements
 - Advanced microstructure and AEC growth quantization (ongoing)
 - Emergence of probable amorphous phase
- Upcoming work
 - Monocore extrusion and drawing
 - Heat treatment optimization
 - SS measurement capability

Fabrication of short-length textured bulks

140 MPa, 4 mm x 4 mm x 150 mm sample.

Texture in bulk samples

Round Pellet

Heat treatment		Density	Grain size in ab	Tautura
Temperature (°C)	Time (hour)	(g/cm ³)	plane (µm)	l exture parameter**
Loose Pov	wder	1.30	1.20	0.13
OPIT Green	Wire*	-	-	0.32
Green Pellet		3.98	1.20	0.68
800	2	-	1.39	0.69
835	2	4.24	1.55	0.74
835	24	4.37	1.79	0.75
865	24	5.13	3.55	0.80
875	2	5.24	2.69	0.84
875	24	6.32	4.31	0.89

Square Wire

Pressed Gre	en Wire	-	-	0.79
870	24	5.86	2.5-5	0.90

Phase growth of 2212

Green Pellet

870 C, 24 h sample. Typical particle size ~4 um

TEM images of 870 C, 24 H sample:

Right: Planar view showing three adjacent 2212 grains Far Right: transverse view showing stacked 2212 grains

Transport Measurements

- 4.2 K
 - Self field
 - 5 T
 - Thanks to ASC/NHMFL
- Open bridge (B)
- Silver wrapped (before HT)
- Open faced: only one BSCCO surface in contact with Ag (A)
- Indium used as solder (released in several samples)

Transport Measurements

Sample	T _{max} , time	B (T)	Calculated normal resistance of sample @ 4.2 K (μΩ)[*]	Measured V/I (mW)	$\frac{V/I}{R_p}$
I-8	870 C, 24 h	5	16.2	0.96	.06
11-5	870 C, 24 h	0	2.8	1.66	.37
II-5	870 C, 24 h	5	12.0	4.42	.59
1-4	870 C, 24 h	0	0.9	0.36	.64
1-4	870 C, 24 h	5	1.1	0.68	.40

*Resistivities of Ag from:

A.J. Barber and A.D. Caplin,"The low temperature electrical resistivity of high purity Ag and Ag-based alloys," J. Phys. **F5**, 679-96 (1975). (104-29).

Sample I-8 V vs. I

Preferential shear in 4 mm x 4 mm

- Fortuitous accident during 4 mm x 4 mm stamping
- Demonstrates that textured powder exhibits ultra-low shear modulus (micaceous)

Compression

Billet Fabrication

- 3 billets ready for extrusion
- Cu/Ag/2212 composites
- Goal: 1 mm OD monocore wire (~3.5 m)
- Square inside/round outside Ag billet from Supramagnetics
- Extrude at NHMFL

Phase Growth (ongoing)

- Vacuum impregnated cross sections of 1 mm x 1 mm samples
- Polished to 0.3 μm
- Back scatter images

Area Calculations					
	2212	AEC	Void		
Area Fraction	83%	2%	15%		
Max. Particle Size µm ²		50	23		

Theoretical Density: 6.6 g/cm³

Image Calc. Density: 5.6 g/cm³

T_c Measurement

Electric Field Vs. Temp 10 μA Fixed Current

Works in progress

- Optimizing heat treatment
 - Time
 - Temperature
 - Atmosphere
- Short sample facility
 - -4.2 K, 0-5 T at Texas A&M
- Monocore extrusions, drawing
- Re-stacked billet extrusion, drawing

Summary

- Demonstrated textured microstructure and 2212 growth without melting
- Demonstrated transport current in non-melt bulks
- Just beginning to explore heat treatment
- High core density wires on the way
- Texture powder could provide a path to solve the challenges of porosity and connectivity, perhaps without melt heat treatment.
- No Phase 2 support:
 - We continue development from our hide, but without support the timeline cannot match MAP needs.