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J E T  S U B S T R U C T U R E

•Many scenarios for physics Beyond the Standard Model 
include highly boosted W, Z, H bosons or top quarks  

•Identifying these rests on subtle substructure inside jets 

• an enormous number of theoretical effort in developing 
observables and techniques to tag jets like this 
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FIG. 1: The three stages of our jet analysis: starting from a hard massive jet on angular scale R, one identifies the Higgs
neighbourhood within it by undoing the clustering (effectively shrinking the jet radius) until the jet splits into two subjets
each with a significantly lower mass; within this region one then further reduces the radius to Rfilt and takes the three hardest
subjets, so as to filter away UE contamination while retaining hard perturbative radiation from the Higgs decay products.

objects (particles) i and j, recombines the closest pair,
updates the set of distances and repeats the procedure
until all objects are separated by a ∆Rij > R, where R
is a parameter of the algorithm. It provides a hierarchical
structure for the clustering, like the K⊥algorithm [9, 10],
but in angles rather than in relative transverse momenta
(both are implemented in FastJet 2.3[11]).

Given a hard jet j, obtained with some radius R, we
then use the following new iterative decomposition proce-
dure to search for a generic boosted heavy-particle decay.
It involves two dimensionless parameters, µ and ycut:

1. Break the jet j into two subjets by undoing its last
stage of clustering. Label the two subjets j1, j2 such
that mj1 > mj2 .

2. If there was a significant mass drop (MD), mj1 <
µmj, and the splitting is not too asymmetric, y =
min(p2

tj1
,p2

tj2
)

m2

j

∆R2
j1,j2

> ycut, then deem j to be the

heavy-particle neighbourhood and exit the loop.
Note that y ≃ min(ptj1 , ptj2)/ max(ptj1 , ptj2).

1

3. Otherwise redefine j to be equal to j1 and go back
to step 1.

The final jet j is to be considered as the candidate Higgs
boson if both j1 and j2 have b tags. One can then identify
Rbb̄ with ∆Rj1j2 . The effective size of jet j will thus be
just sufficient to contain the QCD radiation from the
Higgs decay, which, because of angular ordering [12, 13,
14], will almost entirely be emitted in the two angular
cones of size Rbb̄ around the b quarks.

The two parameters µ and ycut may be chosen inde-
pendently of the Higgs mass and pT . Taking µ ! 1/

√
3

ensures that if, in its rest frame, the Higgs decays to a
Mercedes bb̄g configuration, then it will still trigger the
mass drop condition (we actually take µ = 0.67). The cut
on y ≃ min(zj1 , zj2)/ max(zj1 , zj2) eliminates the asym-
metric configurations that most commonly generate sig-
nificant jet masses in non-b or single-b jets, due to the

1 Note also that this ycut is related to, but not the same as, that
used to calculate the splitting scale in [5, 6], which takes the jet
pT as the reference scale rather than the jet mass.

Jet definition σS/fb σB/fb S/
√

B · fb

C/A, R = 1.2, MD-F 0.57 0.51 0.80

K⊥, R = 1.0, ycut 0.19 0.74 0.22

SISCone, R = 0.8 0.49 1.33 0.42

TABLE I: Cross section for signal and the Z+jets background
in the leptonic Z channel for 200 < pTZ/GeV < 600 and
110 < mJ/GeV < 125, with perfect b-tagging; shown for
our jet definition, and other standard ones at near optimal R
values.

soft gluon divergence. It can be shown that the maxi-
mum S/

√
B for a Higgs boson compared to mistagged

light jets is to be obtained with ycut ≃ 0.15. Since we
have mixed tagged and mistagged backgrounds, we use a
slightly smaller value, ycut = 0.09.

In practice the above procedure is not yet optimal
for LHC at the transverse momenta of interest, pT ∼
200 − 300 GeV because, from eq. (1), Rbb̄ ! 2mh/pT is
still quite large and the resulting Higgs mass peak is sub-
ject to significant degradation from the underlying event
(UE), which scales as R4

bb̄
[15]. A second novel element

of our analysis is to filter the Higgs neighbourhood. This
involves resolving it on a finer angular scale, Rfilt < Rbb̄,
and taking the three hardest objects (subjets) that ap-
pear — thus one captures the dominant O (αs) radiation
from the Higgs decay, while eliminating much of the UE
contamination. We find Rfilt = min(0.3, Rbb̄/2) to be
rather effective. We also require the two hardest of the
subjets to have the b tags.

The overall procedure is sketched in Fig. 1. We il-
lustrate its effectiveness by showing in table I (a) the
cross section for identified Higgs decays in HZ produc-
tion, with mh = 115 GeV and a reconstructed mass re-
quired to be in an moderately narrow (but experimen-
tally realistic) mass window, and (b) the cross section
for background Zbb̄ events in the same mass window.
Our results (C/A MD-F) are compared to those for the
K⊥algorithm with the same ycut and the SISCone [16]
algorithm based just on the jet mass. The K⊥algorithm
does well on background rejection, but suffers in mass
resolution, leading to a low signal; SISCone takes in less
UE so gives good resolution on the signal, however, be-
cause it ignores the underlying substructure, fares poorly
on background rejection. C/A MD-F performs well both



J E T  I M A G E S

•Recently: deep learning algorithms applied to “jet images” 

• based on fast simulation & idealized uniform calorimeter 

• preprocessed to recenter (η, φ) & rotated 
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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Average Boosted W Jet Average QCD Jet

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607

http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190


J E T  I M A G E S

•Inspecting the classifier shows parts of image that favor the 
W→ jj interpretation are consistent with physics intuition 

• W-like   QCD-like
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L2 norm such that

P
I2i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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5.3 Physics in Deep Representations

To get a tangible and more intuitive understanding of what jet structures a DNN learns, we compute
the correlation of the DNN output with each pixel of the jet-images. Specifically, let y be the DNN
output, and consider the intensity of each pixel Iij in transformed (⌘,�) space. We the construct an
image, which we denote the deep correlation jet-image, where each pixel (i, j) is ⇢Iij ,y, the Pearson
Correlation Coe�cient of the pixels intensity with the final DNN output, across images. While this
this image does not give a direct view of the discriminating information learned within the network,
it does provide a guide to how such information may be contained within the network. In Figure 11,
we construct this deep correlation jet-image for both the ConvNet and the MaxOut networks. We
can see that the location and energy of the subleading subjet, found at the bottom of the image, is
highly correlated with the DNN output and important for identifying signal jet-images. In contrast,
the information contained in the leading subjet, seen at (x, y) ⇠ (0, 0) in the image, is not particularly
correlated with the network output owing to the fact that both signal and background jets have
high energy leading subjets. We also see asymmetric regions around both subjets that are correlated
with the DNN output and is indicating the presence of additional radiation expected in the QCD
background jets. Finally, a small negative correlation with the rest of the jet area is seen, indicating
that radiation from the background jets is more likely to be observed in these regions. The exact
function form of these distribution are not known, nor does it seem to describe exactly any known
physics inspired variable.

Figure 11: Per-pixel linear correlation with DNN output for the Convnet (left) and the MaxOut
network (right). Signal and background jets are combined.
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Average Boosted W Jet Average QCD Jet

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607

http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190


D E E P  L E A R N I N G  V S .  T H E O R Y

•While the DNN shows a significant improvement with 
respect to the jet mass combined with single theory 
inspired variable (eg. τ₂₁, D₂), only a small improvement with 
respect to a BDT using several theory-inspired variables
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.
While one cannot probe the motivation of the ML al-

gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.
Physicists have spent significant time and e↵ort de-

signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-

•Other Problems: 

• image-based approach not 
easily generalized to non-
uniform calorimeters 

• not easy to extend to tracks, 
projecting into towers looses 
information 

• theory inspired variables work on 
set of 4-vectors & have 
important theoretical properties

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607

http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190


N O N - U N I F O R M  G E O M E T R Y

6



N O N - U N I F O R M  G E O M E T R Y

7



J E T  I M A G E S

8

⌘

�

b
ea
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

| {z }
⇥3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

would be much slower. There are many options for a smaller set of channels. For example,

one could consider one channel for hadrons and one for leptons, or channels for positively

charged, neutral and negatively charged particles. To be concrete, in this study we take three

input channels:

red = transverse momenta of charged particles

green = the transverse momenta of neutral particles

blue = charged particle multiplicity

– 9 –

image: Komiske, Metodiev, Schwartz arxiv:1612.01551

Whiteson, et al arXiv:1603.09349 
Oliveira, et. al arXiv:1511.05190

Barnard, et al arXiv:1609.00607

“We supplement this construction by adding color to the images, with red, green and blue intensities given by the transverse 
momentum in charged particles, transverse momentum in neutral particles, and pixel-level charged particle counts.” 

http://arxiv.org/abs/arXiv:1603.09349
http://arxiv.org/abs/arXiv:1511.05190
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Figure 6. Averaged signal minus background for our default network and full pre-processing. The rows
show the three dense DNN layers. Red areas indicate signal-like regions, blue areas indicate background-like
regions.

In Fig. 6 we show the same kind of intermediate result for the two fully connected DNN layers.
Each of the 64 linear bars represents a node of the layer. We see that individual nodes are quite
distinctive for signal and background images. The fact that some nodes are not discriminative
indicates that in the interest of speed the number of nodes could be reduced slightly. The output
of the DNN is essentially the same as the probabilities shown in the right panel of Fig. 3, ignoring
the central probability range between 20% and 80%.

To see which pixels of the fully pre-processed 40 ⇥ 40 jet image have an impact on the signal
vs background label, we can correlate the deviation of a pixel xij from its mean value x̄ij with the
deviation of the label y from its mean value ȳ. A properly normalized correlation function for a
given set of combined signal and background images can be defined as

rij =

P
images

(xij � x̄ij) (y � ȳ)
qP

images

(xij � x̄ij)
2

qP
images

(y � ȳ)2
. (12)

It is usually referred to as the Pearson correlation coe�cient. From the definition we see that
for a signal probability y positive values of rij indicate signal-like patterns. In Fig. 7 we show
this correlation for our network architecture. A large energy deposition in the center leads to
classification as background. A secondary energy deposition in the 12 o’clock position combined
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Figure 7. Pearson correlation coe�cient for 10,000 signal and background images each. The corresponding
jet image is illustrated in Fig. 1. Red areas indicate signal-like regions, blue areas indicate background-like
regions.
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Figure 8. Left: performance of di↵erent DeepTop setups, including the curves shown in Fig. 3. Right:
performance of the neural network tagger compared to the QCD-based approaches SoftDrop plus N -
subjettiness and including the HEPTopTagger variables.

to the HEPTopTagger or SoftDrop picks up this additional information and also induces the
three-prong top decay structure into SoftDrop. We use N kT -axes, � = 1 and the reference
distance R

0

. A small value ⌧N indicates consistency with N or less substructure axes, so an N -
prong decays give rise to a small ratio ⌧N/⌧N�1

. For top tagging ⌧

3

/⌧

2

is particularly useful in
combination with QCD taggers in a multivariate setup [19]. The N -subjettiness variables ⌧j can
be defined based on the complete fat jet or based on the fat jet after applying the SoftDrop
criterion. Using ⌧j and ⌧

sd

j in a multivariate analysis usually leads to optimal result.

B. Comparison

To benchmark the performance of ourDeepTopDNN, we compare its ROC curve with standard
Boosted Decision Trees based on the C/A jets using SoftDrop combined with N -subjettiness.
From Fig. 3 we know the spread of performance for the di↵erent network architectures for fully
pre-processed images. In Fig. 8 we see that minimal pre-processing actually leads to slightly better
results, because the combination or rotation and cropping described in Sec. II A leads to a small
loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables

{ m

sd

,m

fat

, ⌧

2

, ⌧

3

, ⌧

sd

2

, ⌧

sd

3

} (SoftDrop + N -subjettiness) , (16)

where m

fat

is the un-groomed mass of the fat jet. This is similar to standard experimental ap-
proaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition, we include the
HEPTopTagger2 information from filtering combined with a mass drop criterion,

{ m

sd

,m

fat

,m

rec

, f
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,�R

opt

, ⌧
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, ⌧

3
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} (MotherOfTaggers) . (17)
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Figure 2. E↵ect of the preprocessing on the image mass calculated from E-(left) and ET -images (right) of
signal (top) and background(bottom). The right set of plots illustrates the situation for forward jets with
|⌘| > 2.

where ⌘0i and �

0
i are the center of the ith pixel after pre-processing. The study of all pre-processing

steps and their e↵ect on the image mass in Fig. 2 illustrates that indeed the rapidity shift has
the largest e↵ect on the E images, but this e↵ect is not large. For the ET images the jet mass
distribution is una↵ected by the shift pre-processing step. The reason why our e↵ect on the E

images is much milder than the one observed in Ref. [13] is our condition |⌘
fat

| < 1. In the the
lower panels of Fig. 2 we illustrate the e↵ect of pre-processing on fat jets with |⌘| > 2, where the
image masses changes dramatically. Independent of these details we use pre-processed ET images
as our machine learning input [17, 21, 22, 28]. Since networks prefer small numbers, we scale the
images to keep most pixel entries between 0 and 1.

B. Network architecture

To identify a suitable DeepTop network architecture, we scan over several possible realizations
or hyper-parameters. As discussed in the last section, we start with jet images of size 40 ⇥ 40.
For architecture testing we split our total signal and background samples of 600,000 images each
into three sub-samples. After independently optimizing the architecture we train the network with
150,000 events and after each training epoch test it on an independent test sample of the same
size. The relative performance on the training and test samples allows us to avoid over-training.
Finally, we determine the performance of the default network on a third sample, now with 300,000
events.

In a first step we need to optimize our network architecture. The ConvNet side is organized
in n

c-block

blocks, each containing n

c-layer

sequences of ZeroPadding, Convolution and Activation
steps. For activation we choose the ReL step function. Inside each block the size of the feature maps
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Deep-learning Top Taggers or The End of QCD?
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Machine learning based on convolutional neural networks can be used to study jet images
from the LHC. Top tagging in fat jets o↵ers a well-defined framework to establish our Deep-
Top approach and compare its performance to QCD-based top taggers. We first optimize
a network architecture to identify top quarks in Monte Carlo simulations of the Standard
Model production channel. Using standard fat jets we then compare its performance to a
multivariate QCD-based top tagger. We find that both approaches lead to comparable per-
formance, establishing convolutional networks as a promising new approach for multivariate
hypothesis-based top tagging.
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Similar images ↓ showing which regions correlate with top tag

Again, combining many “expert” / QCD-inspired features ↑ 
(MotherOfTaggers) does pretty well. Deep network does a  
little better

← Again, lots of studies to understand how 
pixilation and pre-processing affects performance 

↓ Recent paper using input 4-vectors instead of image

Jet Constituents for Deep Neural Network Based Top Quark

Tagging

J. Pearkes, W. Fedorko, A. Lister, C. Gay1

1

Department of Physics and Astronomy,

The University of British Columbia, BC, Canada

(Dated: April 10, 2017)

Abstract
Recent literature on deep neural networks for tagging of highly energetic jets resulting from top

quark decays has focused on image based techniques or multivariate approaches using high level

jet substructure variables. Here a sequential approach to this task is taken by using an ordered

sequence of jet constituents as training inputs. Unlike previous approaches, this strategy does not

result in a loss of information during pixelisation or the calculation of high level features. New

preprocessing methods that do not alter key physical quantities such as the jet mass are developed.

The jet classification method achieves background rejection of 45 for 50% e�ciency operating point

for reconstruction level jets with transverse momentum range of 600 to 2500 GeV and is insensitive

to multiple proton-proton interactions at the levels expected throughout LHC Run 2.
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H O W  C A N  W E  I M P R O V E ?
•Image based approaches are doing well, but…. 

• would be nice to be able to work with a variable length set of 4-
momenta 

• avoid discretization (eg. use tracks, particle flow, clusters as input)  

• avoid pre-processing into a regular-grid (eg. non-uniform 
calorimeters) 

• avoid representing empty pixels (sparse input) 

• would be nice if classifier had nice theoretical properties 

• infrared & collinear safety, robustness to pileup, etc. 

• would be nice to be more data efficient, most image-based networks 
use a LOT of training data. 
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H A N D L I N G  VA R I A B L E  L E N G T H  D ATA

•Recurrent Neural Network (acting on a variable-length sequence) 
see eg. Guest, Collado, et al in arxiv:1607.08633.  

•Generalization: Recursive Neural Network

11

05/09/17 Topology with LSTM, DS@HEP 2017, J.-R. Vlimant 8

Data Ordering

● Sequence of words in a text have a natural ordering

● Particles in the event do have a natural ordering in space and time
✗ Mostly lost due to detector resolution

● Coherent ordering should help the model in figuring out correlations
➔ Random ordering for reference
➔ Choices of ordering with respect to the leading lepton

(max≡highest pT lepton)
➔ Ascending (asc) or descending (dec)

Topology Classifier with LSTM

Dustin Anderson, Aashirta Mangu, Cristian Pena, Maurizio Pierini,
Maria Spiropulu, Jean-Roch Vlimant, Danny Weitekamp,



H A N D L I N G  VA R I A B L E  L E N G T H  D ATA

•Recurrent Neural Network (acting on a variable-length sequence) 
see eg. Guest, Collado, et al in arxiv:1607.08633.  

•Generalization: Recursive Neural Network

11



Recursive	networks

• Is	a	natural	language	sentence	a	linear
chain,	a	tree,	or	a	directed	graph?
• [Linear	structure]	a	recurrent	net,	or
a	bidirectional	recurrent	net
• [Tree]	recursive	neural	network	

• [Socher et	al.,	2011]	and	more	in	90’s!

• [DAG]	graph	convolutional	network
• See	the	next	slides

Fermilab has a herd of bisons

Fermilab has a herd of bisons

F R O M  I M A G E S  T O  S E N T E N C E S

•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!

12
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•Recursive Neural Networks showing great performance for 
Natural Language Processing tasks 

• neural network’s topology given by parsing of sentence!
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Analogy: 
word → particle 
parsing → jet algorithm



Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S

13

•Work with Gilles Louppe, Kyunghyun Cho, Cyril Becot 
(arXiv:1702.00748) 

• Use sequential recombination jet algorithms to 
provide network topology (on a per-jet basis) 

• path towards ML models with good physics properties 

• Top node of recursive network provides a fixed-length 
embedding of a jet that can be fed to a classifier

kt anti-kt
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S

14

towers 

particles

images

• W-jet tagging example 
using data from Dawe, et 
al arXiv:1609.00607 

• down-sampling by 
projecting into images 
looses information 

• RNN needs much less 
data to train!

kt anti-kt
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embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.
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ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S
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kt

anti-kt

• choice of jet 
algorithm matters 

• GRU “gating” 
improves 
performance

anti-ktkt



J E T- L E V E L  C L A S S I F I C AT I O N  R E S U LT S

•When working on images: 

• recursive network has similar 
performance to previous approaches 

•Improved performance when working with 
calo towers without image pre-processing  

• loss of information depends on 
details of calorimeter, pixelation, etc. 

•Working on truth-level particles led to a 
significant improvement 

• generically expect information from 
tracking, particle flow, etc. to be 
somewhere between towers and truth 
particle-level 

16

5

TABLE I. Summary of jet classification performance for sev-
eral approaches applied either to particle-level inputs or tow-
ers from a DELPHES simulation.

Input Architecture ROC AUC R✏=50%

Projected into images
towers MaxOut 0.8418 –
towers kt 0.8321 ± 0.0025 12.7 ± 0.4
towers kt (gated) 0.8277 ± 0.0028 12.4 ± 0.3

Without image preprocessing
towers ⌧21 0.7644 6.79
towers mass + ⌧21 0.8212 11.31
towers kt 0.8807 ± 0.0010 24.1 ± 0.6
towers C/A 0.8831 ± 0.0010 24.2 ± 0.7
towers anti-kt 0.8737 ± 0.0017 22.3 ± 0.8
towers asc-pT 0.8835 ± 0.0009 26.2 ± 0.7
towers desc-pT 0.8838 ± 0.0010 25.1 ± 0.6
towers random 0.8704 ± 0.0011 20.4 ± 0.3
particles kt 0.9185 ± 0.0006 68.3 ± 1.8
particles C/A 0.9192 ± 0.0008 68.3 ± 3.6
particles anti-kt 0.9096 ± 0.0013 51.7 ± 3.5
particles asc-pT 0.9130 ± 0.0031 52.5 ± 7.3
particles desc-pT 0.9189 ± 0.0009 70.4 ± 3.6
particles random 0.9121 ± 0.0008 51.1 ± 2.0

With gating (see Appendix A)
towers kt 0.8822 ± 0.0006 25.4 ± 0.4
towers C/A 0.8861 ± 0.0014 26.2 ± 0.8
towers anti-kt 0.8804 ± 0.0010 24.4 ± 0.4
towers asc-pT 0.8849 ± 0.0012 27.2 ± 0.8
towers desc-pT 0.8864 ± 0.0007 27.5 ± 0.6
towers random 0.8751 ± 0.0029 22.8 ± 1.2
particles kt 0.9195 ± 0.0009 74.3 ± 2.4
particles C/A 0.9222 ± 0.0007 81.8 ± 3.1
particles anti-kt 0.9156 ± 0.0012 68.3 ± 3.2
particles asc-pT 0.9137 ± 0.0046 54.8 ± 11.7
particles desc-pT 0.9212 ± 0.0005 83.3 ± 3.1
particles random 0.9106 ± 0.0035 50.7 ± 6.7

ogy of the RNN, and the presence or absence of gating.
a. Impact of image projection The first factor we

studied was whether or not to project the 4-momenta
into an image as in Refs. [2, 6]. The architectures used
in previous studies required a fixed input (image) repre-
sentation, and cannot be applied to the variable length
set of input 4-momenta. Conversely, we can apply the
RNN architecture to the discretized image 4-momenta.
Table I shows that the RNN architecture based on a kt
topology performs almost as well as the MaxOut architec-
ture in Ref. [6] when applied to the image pre-processed
4-momenta coming from DELPHES towers. Importantly
the RNN architecture is much more data e�cient. While
the MaxOut architecture in Ref. [6] has 975,693 param-
eters and was trained with 6M examples, the non-gated
RNN architecture has 8,481 parameters and was trained
with 100,000 examples only.

Next, we compare the RNN classifier based on a kt
topology on tower 4-momenta with and without image
preprocessing. Table I and Fig. 3 show significant gains
in not using jet images, improving ROC AUC from 0.8321

to 0.8807 (resp., R✏=50% from 12.7 to 24.1) in the case
of kt topologies. In addition, this result outperforms the
MaxOut architecture operating on images by a signifi-
cant margin. This suggests that the projection into an
image loses information and impacts classification perfor-
mance. We suspect the loss of information to be due to
some of the construction steps of jet images (i.e., pixeli-
sation, rotation, zooming, cropping and normalization).
In particular, all are applied at the image-level instead of
being performed directly on the 4-momenta, which might
induce artefacts due to the lower resolution, particle su-
perposition and aliasing. By contrast, the RNN is able
to work directly with the 4-momenta of a variable-length
set of particles, without any loss of information. For
completeness, we also compare to the performance of a
classifier based purely on the single n-subjettiness fea-
ture ⌧21 := ⌧2/⌧1 and a classifier based on two features
(the trimmed mass and ⌧21) [23]. In agreement with pre-
vious results based on deep learning [2, 6], we see that
our RNN classifier clearly outperforms this variable.

b. Measurements of the 4-momenta The second fac-
tor we varied was the source of the 4-momenta. The
towers scenario, corresponds to the case where the
4-momenta come from the calorimeter simulation in
DELPHES. While the calorimeter simulation is simplistic,
the granularity of the towers is quite large (10� in �)
and it does not take into account that tracking detectors
can provide very accurate momenta measurements for
charged particles that can be combined with calorimetry
as in the particle flow approach. Thus, we also consider
the particles scenario, which corresponds to an idealized
case where the 4-momenta come from perfectly measured
stable hadrons from PYTHIA. Table I and Fig. 3 show that
further gains could be made with more accurate measure-
ments of the 4-momenta, improving e.g. ROC AUC from
0.8807 to 0.9185 (resp., R✏=50% from 24.1 to 68.3) in the
case of kt topologies. We also considered a case where the
4-momentum came from the DELPHES particle flow sim-
ulation and the data associated with each particle was
augmented with a particle-flow identifier distinguishing
± charged hadrons, photons, and neutral hadrons. This
is similar in motivation to Ref. [7], but we did not ob-
serve any significant gains in classification performance
with respect to the towers scenario.

c. Topology of the binary trees The third factor we
studied was the topology of the binary tree tj described
in Sections II and IIIA that dictates the recursive struc-
ture of the RNN. We considered binary trees based on
the anti-kt, Cambridge-Aachen (C/A), and kt sequential
recombination jet algorithms, along with random, asc-pT
and desc-pT binary trees. Table I and Fig. 4 show the
performance of the RNN classifier based on these various
topologies. Interestingly, the topology is significant.

For instance, kt and C/A significantly outperform the
anti-kt topology on both tower and particle inputs. This
is consistent with intuition from previous jet substruc-
ture studies where jets are typically reclustered with the
kt algorithm. The fact that the topology is important is



W E  W I L L  U S E  A L L  T H E  PA R T I C L E S  I N  T H E  E V E N T  A S  
I N P U T  T O  T H E  C L A S S I F I E R !

From Jets to Events



E V E N T  E M B E D D I N G S

•Jointly optimize jet embedding → event embedding → classifier
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Appendix A: Gated recursive embedding of jets

The recursive activation proposed in the previous sec-
tion su↵ers from two critical issues. First, it assumes
that left-child, right-child and local node information
hkL , hkR , uk are all equally relevant for computing the
new activation, while only some of this information may
be needed and selected. Second, it forces information to
pass through several levels of non-linearities and does not
allow to propagate unchanged from leaves to root. Ad-
dressing these issues and generalizing from [5–7], we pro-
pose to recursively define a recursive activation equipped

with reset and update gates as follows:

hk =

8
><

>:
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where Wh̃ 2 Rq⇥3q, bh̃ 2 Rq, Wz 2 Rq⇥4q, bz 2 Rq,
Wr 2 Rq⇥3q, br 2 Rq, Wu 2 Rq⇥4 and bu 2 Rq form
together the shared parameters to be learned, � is the
ReLU activation function and � denotes the element-
wise multiplication.

Intuitively, the reset gates rL, rR and rN control how
to actively select and then merge the left-child embed-
ding hkL , the right-child embedding hkR and the local
node information uk to form a new candidate activation
h̃k. The final embedding hk can then be regarded as a

It scales!



E V E N T- L E V E L  R E S U LT S

• compared only jet-level 4-momentum 
v(tⱼ) to adding jet-embedding hⱼ 

• adding jet embedding is much 
better (provides jet tagging info) 

• compared RNN that works on jet-level 
embeddings to an RNN that simply 
processes all particles in the event 

• jet clustering & jet embeddings 
help a lot
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small transverse momentum.

• Collinear safety. The model is robust to a collinear
splitting of a particle, which is represented by re-
placing a particle vj 2 e with two particles vj1

and vj2 , such that vj = vj1 + vj2 and vj1 · vj2 =
||vj1 || ||vj2 ||� ✏.

The sequential recombination algorithms lead to an
IRC-safe definition of jets, in the sense that given the
event e, the number of jets M and their 4-momenta v(tj)
are IRC-safe.

An early motivation of this work is that basing the
RNN topology on the sequential recombination algo-
rithms would provide an avenue to machine learning clas-
sifiers with some theoretical guarantee of IRC safety. If
one only wants to ensure robustness to only one soft par-
ticle or one collinear split, this could be satisfied by sim-
ply running a single iteration of the jet algorithm as a
pre-processing step. However, it is di�cult to ensure a
more general notion of IRC safety on the embedding due
to the non-linearities in the network. Nevertheless, we
can explicitly test the robustness of the embedding or
the subsequent classifier to the addition of soft particles
or collinear splits to the input 4-momenta.

Table II shows the results of a non-gated RNN trained
on the nominal particle-level input when applied to test-
ing data with additional soft particles or collinear splits.
The collinear splits were uniform in the momentum frac-
tion and maintained the small invariant mass of the
hadrons. We considered one or ten collinear splits on
both random particles and the highest pT particles. We
see that while the 30 models trained with a descend-
ing pT topology very slightly outperform the kt topol-
ogy for almost scenarios, their performance in terms of
R✏=50% decreases relatively more rapidly when collinear
splits are applied (see e.g., the collinear10-max scenar-
ios where the performance of kt decreases by 4%, while
the performance of pT decreases by 10%). This suggests
a higher robustness towards collinear splits for recursive
networks based on kt topologies.

We also point out that the training of these networks
is based solely on the classification loss for the nominal
sample. If we are truly concerned with the IRC-safety
considerations, then it is natural to augment the training
of the classifiers to be robust to these variations. A num-
ber of modified training procedures exist, including e.g.,
the adversarial training procedure described in Ref. [27].

VI. EXPERIMENTS WITH EVENT-LEVEL
CLASSIFICATION

As in the previous section, we carried out a number
of performance studies. However, our goal is mainly to
demonstrate the relevance and scalability of the QCD-
motivated approach we propose, rather than making a
statement about the physics reach of the signal process.
Results are discussed considering the idealized particles

TABLE II. Performance of pre-trained RNN classifiers (with-
out gating) applied to nominal and modified particle inputs.
The collinear1 (collinear10) scenarios correspond to applying
collinear splits to one (ten) random particles within the jet.
The collinear1-max (collinear10-max) scenarios correspond to
applying collinear splits to the highest pT (ten highest pT )
particles in the jet. The soft scenario corresponds to adding
200 particles with pT = 10�5 GeV uniformly in 0 < � < 2⇡
and �5 < ⌘ < 5.

Scenario Architecture ROC AUC R✏=50%

nominal kt 0.9185 ± 0.0006 68.3 ± 1.8
nominal desc-pT 0.9189 ± 0.0009 70.4 ± 3.6
collinear1 kt 0.9183 ± 0.0006 68.7 ± 2.0
collinear1 desc-pT 0.9188 ± 0.0010 70.7 ± 4.0
collinear10 kt 0.9174 ± 0.0006 67.5 ± 2.6
collinear10 desc-pT 0.9178 ± 0.0011 67.9 ± 4.3

collinear1-max kt 0.9184 ± 0.0006 68.5 ± 2.8
collinear1-max desc-pT 0.9191 ± 0.0010 72.4 ± 4.3
collinear10-max kt 0.9159 ± 0.0009 65.7 ± 2.7
collinear10-max desc-pT 0.9140 ± 0.0016 63.5 ± 5.2

soft kt 0.9179 ± 0.0006 68.2 ± 2.3
soft desc-pT 0.9188 ± 0.0009 70.2 ± 3.7

TABLE III. Summary of event classification performance.
Best results are achieved through nested recurrence over the
jets and over their constituents, as motivated by QCD.

Input ROC AUC R✏=80%

Hardest jet
v(tj) 0.8909 ± 0.0007 5.6 ± 0.0

v(tj), h
jet(kt)
j 0.9602 ± 0.0004 26.7 ± 0.7

v(tj), h
jet(desc�pT )
j 0.9594 ± 0.0010 25.6 ± 1.4

2 hardest jets
v(tj) 0.9606 ± 0.0011 21.1 ± 1.1

v(tj), h
jet(kt)
j 0.9866 ± 0.0007 156.9 ± 14.8

v(tj), h
jet(desc�pT )
j 0.9875 ± 0.0006 174.5 ± 14.0

5 hardest jets
v(tj) 0.9576 ± 0.0019 20.3 ± 0.9

v(tj), h
jet(kt)
j 0.9867 ± 0.0004 152.8 ± 10.4

v(tj), h
jet(desc�pT )
j 0.9872 ± 0.0003 167.8 ± 9.5

No jet clustering, desc-pT on vi

i = 1 0.6501 ± 0.0023 1.7 ± 0.0
i = 1, . . . , 50 0.8925 ± 0.0079 5.6 ± 0.5
i = 1, . . . , 100 0.8781 ± 0.0180 4.9 ± 0.6
i = 1, . . . , 200 0.8846 ± 0.0091 5.2 ± 0.5
i = 1, . . . , 400 0.8780 ± 0.0132 4.9 ± 0.5

scenario, where the 4-momenta come from perfectly mea-
sured stable hadrons from PYTHIA. Experiments for the
towers scenario (omitted here) reveal similar qualitative
conclusions, though performance was slightly worse for
all models, as expected.
f. Number of jets The first factor we varied was the

maximum number of jets in the sequence of embeddings
given as input to the GRU. While the event-level embed-

•We considered pp → W’(700) → W(→ J) Z(→J)



M I S C  /  O T H E R  T H I N G S  W E  T R I E D
•Average scores reported include uncertainty estimates that come from training 30 
models with distinct initial random seeds.  

•We tried a “stereo” embedding that used both kt and anti-kt, but no significant 
gain in performance 

• want to optimize over the space of sequential recombination jet algorithms… 
but that’s not differentiable in this setup. 

•We transferred activations learned in one topology to another and saw significant 
loss in performance.  

• not surprising, but demonstrates activations aren’t generic 

•We extended representation of particles from 4-momentum only to also include 
charge & EM/Had info from Delphes particle flow block.  

• At level of Delphes simulation, not much difference, but important point is can 
extend to “particle embedding”. Path towards end-to-end learning.
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Theoretical considerations, 
Systematics, & Jet Grooming



I R C  R O B U S T N E S S

•One of the primary concerns in the literature constructing jet-tagging 
observables is that they are theoretically well-behaved. For instance, 
physicists want observables to be infrared and collinear safe.  

•We compared nominal results to perturbed samples where we applied 
collinear splits or added soft radiation. 

• QCD-inspired networks are more stable (have less variance) than 
networks based on simple pT ordering.  

• Does this outweigh small gain in nominal performance?
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small transverse momentum.

• Collinear safety. The model is robust to a collinear
splitting of a particle, which is represented by re-
placing a particle vj 2 e with two particles vj1

and vj2 , such that vj = vj1 + vj2 and vj1 · vj2 =
||vj1 || ||vj2 ||� ✏.

The sequential recombination algorithms lead to an
IRC-safe definition of jets, in the sense that given the
event e, the number of jets M and their 4-momenta v(tj)
are IRC-safe.

An early motivation of this work is that basing the
RNN topology on the sequential recombination algo-
rithms would provide an avenue to machine learning clas-
sifiers with some theoretical guarantee of IRC safety. If
one only wants to ensure robustness to only one soft par-
ticle or one collinear split, this could be satisfied by sim-
ply running a single iteration of the jet algorithm as a
pre-processing step. However, it is di�cult to ensure a
more general notion of IRC safety on the embedding due
to the non-linearities in the network. Nevertheless, we
can explicitly test the robustness of the embedding or
the subsequent classifier to the addition of soft particles
or collinear splits to the input 4-momenta.

Table II shows the results of a non-gated RNN trained
on the nominal particle-level input when applied to test-
ing data with additional soft particles or collinear splits.
The collinear splits were uniform in the momentum frac-
tion and maintained the small invariant mass of the
hadrons. We considered one or ten collinear splits on
both random particles and the highest pT particles. We
see that while the 30 models trained with a descend-
ing pT topology very slightly outperform the kt topol-
ogy for almost scenarios, their performance in terms of
R✏=50% decreases relatively more rapidly when collinear
splits are applied (see e.g., the collinear10-max scenar-
ios where the performance of kt decreases by 4%, while
the performance of pT decreases by 10%). This suggests
a higher robustness towards collinear splits for recursive
networks based on kt topologies.

We also point out that the training of these networks
is based solely on the classification loss for the nominal
sample. If we are truly concerned with the IRC-safety
considerations, then it is natural to augment the training
of the classifiers to be robust to these variations. A num-
ber of modified training procedures exist, including e.g.,
the adversarial training procedure described in Ref. [27].

VI. EXPERIMENTS WITH EVENT-LEVEL
CLASSIFICATION

As in the previous section, we carried out a number
of performance studies. However, our goal is mainly to
demonstrate the relevance and scalability of the QCD-
motivated approach we propose, rather than making a
statement about the physics reach of the signal process.
Results are discussed considering the idealized particles

TABLE II. Performance of pre-trained RNN classifiers (with-
out gating) applied to nominal and modified particle inputs.
The collinear1 (collinear10) scenarios correspond to applying
collinear splits to one (ten) random particles within the jet.
The collinear1-max (collinear10-max) scenarios correspond to
applying collinear splits to the highest pT (ten highest pT )
particles in the jet. The soft scenario corresponds to adding
200 particles with pT = 10�5 GeV uniformly in 0 < � < 2⇡
and �5 < ⌘ < 5.

Scenario Architecture ROC AUC R✏=50%

nominal kt 0.9185 ± 0.0006 68.3 ± 1.8
nominal desc-pT 0.9189 ± 0.0009 70.4 ± 3.6
collinear1 kt 0.9183 ± 0.0006 68.7 ± 2.0
collinear1 desc-pT 0.9188 ± 0.0010 70.7 ± 4.0
collinear10 kt 0.9174 ± 0.0006 67.5 ± 2.6
collinear10 desc-pT 0.9178 ± 0.0011 67.9 ± 4.3

collinear1-max kt 0.9184 ± 0.0006 68.5 ± 2.8
collinear1-max desc-pT 0.9191 ± 0.0010 72.4 ± 4.3
collinear10-max kt 0.9159 ± 0.0009 65.7 ± 2.7
collinear10-max desc-pT 0.9140 ± 0.0016 63.5 ± 5.2

soft kt 0.9179 ± 0.0006 68.2 ± 2.3
soft desc-pT 0.9188 ± 0.0009 70.2 ± 3.7

TABLE III. Summary of event classification performance.
Best results are achieved through nested recurrence over the
jets and over their constituents, as motivated by QCD.

Input ROC AUC R✏=80%

Hardest jet
v(tj) 0.8909 ± 0.0007 5.6 ± 0.0

v(tj), h
jet(kt)
j 0.9602 ± 0.0004 26.7 ± 0.7

v(tj), h
jet(desc�pT )
j 0.9594 ± 0.0010 25.6 ± 1.4

2 hardest jets
v(tj) 0.9606 ± 0.0011 21.1 ± 1.1

v(tj), h
jet(kt)
j 0.9866 ± 0.0007 156.9 ± 14.8

v(tj), h
jet(desc�pT )
j 0.9875 ± 0.0006 174.5 ± 14.0

5 hardest jets
v(tj) 0.9576 ± 0.0019 20.3 ± 0.9

v(tj), h
jet(kt)
j 0.9867 ± 0.0004 152.8 ± 10.4

v(tj), h
jet(desc�pT )
j 0.9872 ± 0.0003 167.8 ± 9.5

No jet clustering, desc-pT on vi

i = 1 0.6501 ± 0.0023 1.7 ± 0.0
i = 1, . . . , 50 0.8925 ± 0.0079 5.6 ± 0.5
i = 1, . . . , 100 0.8781 ± 0.0180 4.9 ± 0.6
i = 1, . . . , 200 0.8846 ± 0.0091 5.2 ± 0.5
i = 1, . . . , 400 0.8780 ± 0.0132 4.9 ± 0.5

scenario, where the 4-momenta come from perfectly mea-
sured stable hadrons from PYTHIA. Experiments for the
towers scenario (omitted here) reveal similar qualitative
conclusions, though performance was slightly worse for
all models, as expected.
f. Number of jets The first factor we varied was the

maximum number of jets in the sequence of embeddings
given as input to the GRU. While the event-level embed-
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small transverse momentum.

• Collinear safety. The model is robust to a collinear
splitting of a particle, which is represented by re-
placing a particle vj 2 e with two particles vj1

and vj2 , such that vj = vj1 + vj2 and vj1 · vj2 =
||vj1 || ||vj2 ||� ✏.

The sequential recombination algorithms lead to an
IRC-safe definition of jets, in the sense that given the
event e, the number of jets M and their 4-momenta v(tj)
are IRC-safe.

An early motivation of this work is that basing the
RNN topology on the sequential recombination algo-
rithms would provide an avenue to machine learning clas-
sifiers with some theoretical guarantee of IRC safety. If
one only wants to ensure robustness to only one soft par-
ticle or one collinear split, this could be satisfied by sim-
ply running a single iteration of the jet algorithm as a
pre-processing step. However, it is di�cult to ensure a
more general notion of IRC safety on the embedding due
to the non-linearities in the network. Nevertheless, we
can explicitly test the robustness of the embedding or
the subsequent classifier to the addition of soft particles
or collinear splits to the input 4-momenta.

Table II shows the results of a non-gated RNN trained
on the nominal particle-level input when applied to test-
ing data with additional soft particles or collinear splits.
The collinear splits were uniform in the momentum frac-
tion and maintained the small invariant mass of the
hadrons. We considered one or ten collinear splits on
both random particles and the highest pT particles. We
see that while the 30 models trained with a descend-
ing pT topology very slightly outperform the kt topol-
ogy for almost scenarios, their performance in terms of
R✏=50% decreases relatively more rapidly when collinear
splits are applied (see e.g., the collinear10-max scenar-
ios where the performance of kt decreases by 4%, while
the performance of pT decreases by 10%). This suggests
a higher robustness towards collinear splits for recursive
networks based on kt topologies.

We also point out that the training of these networks
is based solely on the classification loss for the nominal
sample. If we are truly concerned with the IRC-safety
considerations, then it is natural to augment the training
of the classifiers to be robust to these variations. A num-
ber of modified training procedures exist, including e.g.,
the adversarial training procedure described in Ref. [27].

VI. EXPERIMENTS WITH EVENT-LEVEL
CLASSIFICATION

As in the previous section, we carried out a number
of performance studies. However, our goal is mainly to
demonstrate the relevance and scalability of the QCD-
motivated approach we propose, rather than making a
statement about the physics reach of the signal process.
Results are discussed considering the idealized particles

TABLE II. Performance of pre-trained RNN classifiers (with-
out gating) applied to nominal and modified particle inputs.
The collinear1 (collinear10) scenarios correspond to applying
collinear splits to one (ten) random particles within the jet.
The collinear1-max (collinear10-max) scenarios correspond to
applying collinear splits to the highest pT (ten highest pT )
particles in the jet. The soft scenario corresponds to adding
200 particles with pT = 10�5 GeV uniformly in 0 < � < 2⇡
and �5 < ⌘ < 5.
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soft kt 0.9179 ± 0.0006 68.2 ± 2.3
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TABLE III. Summary of event classification performance.
Best results are achieved through nested recurrence over the
jets and over their constituents, as motivated by QCD.

Input ROC AUC R✏=80%

Hardest jet
v(tj) 0.8909 ± 0.0007 5.6 ± 0.0

v(tj), h
jet(kt)
j 0.9602 ± 0.0004 26.7 ± 0.7

v(tj), h
jet(desc�pT )
j 0.9594 ± 0.0010 25.6 ± 1.4

2 hardest jets
v(tj) 0.9606 ± 0.0011 21.1 ± 1.1

v(tj), h
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j 0.9866 ± 0.0007 156.9 ± 14.8

v(tj), h
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5 hardest jets
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v(tj), h
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j 0.9867 ± 0.0004 152.8 ± 10.4

v(tj), h
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j 0.9872 ± 0.0003 167.8 ± 9.5
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i = 1 0.6501 ± 0.0023 1.7 ± 0.0
i = 1, . . . , 50 0.8925 ± 0.0079 5.6 ± 0.5
i = 1, . . . , 100 0.8781 ± 0.0180 4.9 ± 0.6
i = 1, . . . , 200 0.8846 ± 0.0091 5.2 ± 0.5
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scenario, where the 4-momenta come from perfectly mea-
sured stable hadrons from PYTHIA. Experiments for the
towers scenario (omitted here) reveal similar qualitative
conclusions, though performance was slightly worse for
all models, as expected.
f. Number of jets The first factor we varied was the

maximum number of jets in the sequence of embeddings
given as input to the GRU. While the event-level embed-



S H O W E R  U N C E R TA I N T I E S

•We should keep in mind that the there is uncertainty in the showers due to different 
generators. Two approaches: 

• weakly supervised approach (see arXiv:1702.00414) uses real data, but requires signal 
examples in data with known proportion 

• “learning to pivot” modify training to be robust to the “known unknowns” of the 
simulation
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Figure 4: This figure shows the ROC curves of the PYTHIA (solid blue), VINCIA (dashed green), HERWIG angular (red dash-dot)
and dipole (dashed purple), and SHERPA (solid gold) showers for the DNN output (left) and the combination of the jet mass
and n-subjettiness ratio ⌧21 through a two-dimensional binned likelihood ratio (right). The lower panels show the ratio of
the ROCs with the default PYTHIA shower. All ROC curves are computed using jet images within a window on the jet mass,
50 < m < 110 GeV, and transverse momentum, 250 < pT < 300 GeV.

Next we show ROC curves for the di↵erent showers in
Fig. 4. We used the same network discussed in Section III
trained on the default PYTHIA shower (without zooming),
and then used events from the other generators and
parton showers as input, e.g. we ask a neural network
trained on the PYTHIA shower to discriminate between
QCD and W-jets from SHERPA.

We do not extend the ROC curves down to zero
signal e�ciency since they are more statistically limited
there. The PYTHIA ROC is higher than all other shower
e�ciency curves. While both the SHERPA and HERWIG
dipole images exhibit superficial similarities in Fig. 3, the
network is better at discriminating the SHERPA events.
At a fixed low signal e�ciency the HERWIG angular and
dipole showers have the lowest background rejection,
smaller than that obtained using the PYTHIA default by
a factor of two. The VINCIA and SHERPA showers have
a slightly lower rejection rate than the PYTHIA one. For
signal e�ciency of 50% the uncertainty from changing
the event generator is around 40%.

For large background rejection rate we note that the
network trained on the PYTHIA events has a lower e�-
ciency for selecting signal events generated from the other

showers, i.e. it is maximally e�cient for the shower
it was trained on. This may be due to the network
learning some features associated specifically with the
PYTHIA shower and thus performing well on PYTHIA-like
events.

We also show in Fig. 4 the ROC curves we obtain
for the trimmed jet mass and the n-subjettiness ratio
⌧21 ⌘ ⌧2/⌧1 [10] which is often used as a discriminating
variable in studies of jet substructure [62]. We see that
the neural network consistently outperforms these vari-
ables (in agreement with the conclusions already reached
in Ref. [29]). This result stands independent of the uncer-
tainty induced by the choice of event generator, although
the results for the HERWIG showers are close to being
degenerate with it.

In the right panel of Fig. 4 we show the ROC curves we
obtain from the combined jet mass and ⌧21 observables
for the di↵erent parton showers. We see that the parton
shower uncertainties in this case are very similar to those
obtained from the jet images. The uncertainties from
the varying the parton shower for the jet images are thus
of similar size to those associated other more common
variables, such as those found in theoretical studies of
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L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:
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Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD
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of producing samples from random noise z. More specif-
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against an adversary classifier d : Rp 7! [0, 1] whose an-
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erated data g(Z). Both models g and d are trained simul-
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that are di�cult to identify by d, while d incrementally
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distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.
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means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
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p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
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f
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parameters �

j
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r

. The adver-
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function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
i

}N
i=1, from which we

train a neural network classifier f minimizing L
f

(✓
f

)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L

f

, L
r

and L
f

��L
r

are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L

f

� �L
r

is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L

f

, but which results in a classifier

Objective

•
Consider the value function

V (D,G ) = E
x⇠p

data

[log(D(x))] + E
z⇠p

noise

[log(1� D(G (z)))];

•
We want to

For fixed G , find D which maximizes V (D,G ),

For fixed D, find G which minimizes V (D,G );

•
In other words, we are looking for the saddle point

(D

⇤,G ⇤
) = max

D
min

G
V (D,G ).
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L E A R N I N G  T O  P I V O T  W I T H  A D V E R S A R I A L  N E T W O R K S

• Typically classifier f(x) trained to 
minimize loss Lf.  

• want classifier output to be 
insensitive to systematics 
(nuisance parameter ν) 

• introduce an adversary r that 
tries to predict ν based on f.  

• setup as a minimax game:

24

2

Classifier f

X

✓f

f(X; ✓f )

Lf (✓f )

...

Adversary r

�1(f(X; ✓f ); ✓r)

�2(f(X; ✓f ); ✓r)

. . .

✓r

...

Z

p✓r (Z|f(X; ✓f ))

P(�1, �2, . . . )

Lr(✓f , ✓r)

FIG. 1. Architecture for the adversarial training of a binary classifier f against a nuisance parameters Z. The adversary r

models the distribution p(z|f(X; ✓f ) = s) of the nuisance parameters as observed only through the output f(X; ✓f ) of the
classifier. By maximizing the antagonistic objective Lr(✓f , ✓r) (as part of minimizing Lf (✓f ) � �Lr(✓f , ✓r)), the classifier f

forces p(z|f(X; ✓f ) = s) towards the prior p(z), which happens when f(X; ✓f ) is independent of the nuisance parameter Z and
therefore pivotal.

parameters. This implies that f(X; ✓
f

) and Z are inde-
pendent random variables.

As stated in Eqn. 1, the pivotal quantity criterion is
imposed with respect to p(X|Z) where Y is marginalized
out. In some situations however (see e.g., Sec. VB), class
conditional independence of f(X; ✓

f

) on the nuisance Z
is preferred, which can then be stated as requiring

p(f(X; ✓
f

) = s|z, y) = p(f(X; ✓
f

) = s|z0, y) (2)

for one or several specified values y 2 Y.

III. METHOD

Joint training of adversarial networks was first pro-
posed by [21] as a way to build a generative model capable
of producing samples from random noise z. More specif-
ically, the authors pit a generative model g : Rn 7! Rp

against an adversary classifier d : Rp 7! [0, 1] whose an-
tagonistic objective is to recognize real data X from gen-
erated data g(Z). Both models g and d are trained simul-
taneously, in such a way that g learns to produce samples
that are di�cult to identify by d, while d incrementally
adapts to changes in g. At the equilibrium, g models a
distribution whose samples can be identified by d only
by chance. That is, assuming enough capacity in d and
g, the distribution of g(Z) eventually converges towards
the real distribution of X.

In this work, we repurpose adversarial networks as a
means to constrain the predictive model f in order to
satisfy Eqn. 1. As illustrated in Fig. 1, we pit f against
an adversary model r := p

✓r (z|f(X; ✓
f

) = s) of pa-
rameters ✓

r

and associated loss L
r

(✓
f

, ✓
r

). This model
takes as input realizations f(X; ✓

f

) and produces as out-
put a function modeling the posterior probability den-

sity p
✓r (z|f(X; ✓

f

) = s). Intuitively, if p(f(X; ✓
f

) = s|z)
varies with z, then the corresponding correlation can be
captured by r. By contrast, if p(f(X; ✓

f

) = s|z) is invari-
ant with z, as we require, then r should perform poorly
and be close to random guessing. Training f such that
it additionally minimizes the performance of r therefore
acts as a regularization towards Eqn. 1.
If Z takes discrete values, then p

✓r can be represented
e.g. as a probabilistic classifier R 7! R|Z| whose jth out-
put (for j = 1, . . . , |Z|) is the estimated probability mass
p
✓r (zj |f(X; ✓

f

) = s). Similarly, if Z takes continuous
values, then we can model the posterior probability den-
sity p(z|f(X; ✓

f

) = s) with a su�ciently flexible para-
metric family of distributions P(�1, �2, . . . ), where the
parameters �

j

depend on f(X, ✓
f

) and ✓
r

. The adver-
sary r may take any form, i.e. it does not need to be
a neural network, as long as it exposes a di↵erentiable
function p

✓r (z|f(X; ✓
f

) = s) of su�cient capacity to rep-
resent the true distribution. Fig. 1 illustrates a concrete
example where p

✓r (z|f(X; ✓
f

) = s) is a mixture of gaus-
sians, as modeled with a mixture density network [10]).
The jth output corresponds to the estimated value of
the corresponding parameter �

j

of that distribution (e.g.,
the mean, variance and mixing coe�cients of its compo-
nents). As in [10, 26], the estimated probability density
p
✓r (z|f(X; ✓

f

) = s) can then be evaluated for any z 2 Z
and any score s 2 S.
As with generative adversarial networks, we propose

to train f and r simultaneously, which we carry out by
considering the value function

E(✓
f

, ✓
r

) = L
f

(✓
f

)� L
r

(✓
f

, ✓
r

) (3)

that we optimize by finding the minimax solution

✓̂
f

, ✓̂
r

= argmin
✓f

max
✓r

E(✓
f

, ✓
r

). (4)

4

• ✓̂
f

maximizes the conditional entropy
H(Z|f(X; ✓

f

)), since H(Z|f(X; ✓))  H(Z)
from the properties of entropy. Note that this
latter inequality holds for both the discrete and
the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
H(Z|f(X; ✓

f

)) = H(Z) because of the second condition,
which happens exactly when Z and f(X; ✓

f

) are inde-
pendent variables. In other words, the optimal classifier
f(·; ✓̂

f

) is also a pivotal quantity.

Proposition 1 suggests that if at each step of Algo-
rithm 1 the adversary r is allowed to reach its optimum
given f (e.g., by setting K su�ciently high) and if f is
updated to improve L

f

(✓
f

) � H(Z|f(X; ✓
f

)) with su�-
ciently small steps, then f should converge to a classifier
that is both optimal and pivotal, provided such a clas-
sifier exists. Therefore, the adversarial term L

r

can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.

On many practical problems, the assumption of exis-
tence of an optimal and pivotal classifier may not hold
because the nuisance parameter directly shapes the deci-
sion boundary. In this case, the lower bound

H(Y |X)�H(Z) < L
f

(✓
f

)�H(Z|f(X; ✓
f

)) (10)

is strict: f can either be an optimal classifier or a pivotal
quantity, but not both simultaneously. In this situation,
it is natural to rewrite the value function E as

E
�

(✓
f

, ✓
r

) = L
f

(✓
f

)� �L
r

(✓
f

, ✓
r

), (11)

where � � 0 is a hyper-parameter controlling the trade-
o↵ between the performance of f and its independence
with respect to the nuisance parameter. Setting � to a
large value will preferably enforces f to be pivotal while
setting � close to 0 will rather constraint f to be optimal.
When the lower bound is strict, let us note however that
there may exist distinct but equally good solutions ✓

f

, ✓
r

minimizing Eqn. 11. In this zero-sum game, an increase
in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.

Interestingly, let us finally emphasize that these results
hold using only the (1D) output s of f(·; ✓

f

) (in the case
of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.

V. EXPERIMENTS

A. Toy example

As a guiding toy example, let us consider the binary
classification of 2D data drawn from multivariate gaus-
sians with equal priors, such that

x ⇠ N
✓
(0, 0),


1 �0.5

�0.5 1

�◆
when Y = 0, (12)

x ⇠ N
✓
(1, 1 + Z),


1 0
0 1

�◆
when Y = 1. (13)

The continuous nuisance parameter Z represents in this
case our uncertainty about the exact location of the mean
of the second gaussian. Our goal is to build a classifier
f(·; ✓

f

) for predicting Y given X, but such that the prob-
ability distribution of f(X; ✓

f

) is invariant with respect
to the nuisance parameter Z.
Assuming a gaussian prior z ⇠ N (0, 1), we start by

generating training data {x
i

, y
i

, z
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}N
i=1, from which we

train a neural network classifier f minimizing L
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)
without considering its adversary r. The network ar-
chitecture comprises 2 dense hidden layers of 20 nodes
respectively with tanh and ReLU activations, followed by
a dense output layer with a single node with a sigmoid
activation. As shown in Fig. 2, the resulting classifier
is not pivotal, as the conditional probability densities of
its decision scores f(X; ✓

f

) show large discrepancies be-
tween values z of the nuisance parameters. While not
shown here, a classifier trained only from data generated
at the nominal value Z = 0 would also not be pivotal.
Let us now consider the joint training of f against an

adversary r implemented as a mixture density network
modeling Z|f(X; ✓

f

) as a mixture of five gaussians. The
network architecture of r comprises 2 dense hidden lay-
ers of 20 nodes with ReLU activations, followed by an
output layer of 15 nodes corresponding to the means,
standard deviations and mixture coe�cients of the five
gaussians. Output nodes for the mean values come with
linear activations, output nodes for the standard devi-
ations with exponential activations to ensure positivity,
while output nodes for the mixture coe�cients implement
the softmax function to ensure positivity and normaliza-
tion. When running Algorithm 1 as initialized with the
classifier f obtained previously, adversarial training e↵ec-
tively reshapes the decision function so it that becomes
almost independent on the nuisance parameter, as shown
in Fig. 2. In particular, the conditional probability den-
sities of the decision scores f(X; ✓

f

) are now very similar
to each other, indicating only a small residual depen-
dency on the nuisance, as theoretically expected. The
dynamics of adversarial training is illustrated in Fig. 3,
where the losses L
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, L
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and L
f

��L
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are evaluated after
each iteration of Algorithm 1. In the first iterations, we
observe that the global objective L
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is minimized
by making the classifier less accurate, hence the corre-
sponding increase of L
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, but which results in a classifier
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D
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G
V (D,G ).
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the di↵erential definitions of entropy.

By assumption, the lower bound is active, thus we have
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which happens exactly when Z and f(X; ✓
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sifier exists. Therefore, the adversarial term L
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can be
regarded as a way to select among the class of all opti-
mal classifiers a function f that is also pivotal. Despite
the former theoretical characterization of the minimax
solution of Eqn. 4, let us note that formal guarantees
of convergence towards that solution by Algorithm 1 in
the case where a finite number K of steps is taken for r
remains to be proven.
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in accuracy would exactly be compensated by a decrease
in pivotality and vice-versa. How to best navigate this
Pareto frontier to maximize a higher-level objective re-
mains a question open for future works.
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hold using only the (1D) output s of f(·; ✓
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of binary classification) as input to the adversary. We
could similarly enforce an intermediate representation of
the data to be pivotal, e.g. as in [19], but this is in fact
not necessary.
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A N  E X A M P L E

•Technique allows us to tune λ, the tradeoff between 
classification power and robustness to systematic uncertainty

25

Ex
p

ec
te

d
 s

ig
ni

fic
an

ce
 o

f s
ea

rc
h

An example: 
background: 1000 QCD jets 
signal: 100 boosted W’s 

Train W vs. QCD classifier 

Pileup as source of 
uncertainty 

Simple cut-and-count 
analysis with background 
uncertainty. 

standard 
training

optimal tradeoff of classification vs. & robustness

G. Louppe, M. Kagan, K. Cranmer, arXiv:1611.01046



A P P L I C AT I O N  O F  “ L E A R N I N G  T O  P I V O T ”

•Our adversarial technique has been 
applied to find jet tagger that is 
decorrelated with jet mass (which 
would be used as a discriminating 
variable in a fit)
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We describe a strategy for constructing a neural network jet substructure tagger which powerfully
discriminates boosted decay signals while remaining largely uncorrelated with the jet mass. This
reduces the impact of systematic uncertainties in background modeling while enhancing signal purity,
resulting in improved discovery significance relative to existing taggers. The network is trained using
an adversarial strategy, resulting in a tagger that learns to balance classification accuracy with
decorrelation. As a benchmark scenario, we consider the case where large-radius jets originating
from a boosted resonance decay are discriminated from a background of nonresonant quark and
gluon jets. We show that in the presence of systematic uncertainties on the background rate, our
adversarially-trained, decorrelated tagger considerably outperforms a conventionally trained neural
network, despite having a slightly worse signal-background separation power. We generalize the
adversarial training technique to include a parametric dependence on the signal hypothesis, training
a single network that provides optimized, interpolatable decorrelated jet tagging across a continuous
range of hypothetical resonance masses, after training on discrete choices of the signal mass.

I. INTRODUCTION

The enormous center-of-mass energy of the Large
Hadron Collider (LHC) enables the production of
particles at such extreme velocities that the decay
products of even massive particles can become col-
limated. Rather than producing distinct deposits of
energy in the calorimeter, hadronic decay products
of such boosted objects can overlap, creating a sin-
gle large jet. Distinguishing between jets originat-
ing from a single particle (such as a quark or gluon),
and those which contain two or three hadronic decay
products, is known as jet tagging, and has become
an essential component of searches for new physics
at the LHC [1–5].

However, optimizing the LHC discovery potential
requires balancing the competing constraints of sig-
nal discrimination and systematic uncertainties. We
consider the case posed in Ref. [6] in which a spec-
trum of jet masses is examined for the presence of a
signal-like resonance peak. The background is dom-

inated by QCD jets, while the hypothetical signal is
produced via the hadronic decay of a boosted reso-
nance.

On one hand, there has been intense theoretical
work to develop jet substructure tagging tools [7, 8]
with powerful discrimination between these types of
jets. On the other hand, the processes that pro-
duce backgrounds to these searches are often not
well understood or are poorly modeled by simula-
tion tools. As a result, experiments in practice rely
on the assumption of a smooth background spectrum
which can be interpolated under a signal peak from
sidebands. Unfortunately, the jet-tagging quanti-
ties may be correlated with jet mass, resulting in
a distortion of the background shape [9], leading
to systematic uncertainties which cannot be sim-
ply characterized or controlled. The desire for op-
timal discrimination and reduced sensitivity to sys-
tematic uncertainties are naturally at tension with
each other.

One solution, Designing Decorrelated Taggers
(DDT) [9], uses a simple parametric function to con-
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FIG. 11. Profile of the paramterized NN responses
to background versus jet mass, where the parameterized
network was evaluated at di↵erent Z0 mass hypotheses.
Top shows the response of the adversarially-trained clas-
sifier, which minimizes correlation with jet mass; bottom
shows the response of a network trained in the traditional
manner, to optimize classification accuracy.

able of interest, the jet mass. This allows the classi-
fier to enhance signal to noise ratio while minimiz-
ing the tendency of the background distribution to
morph into a shape which is degenerate with the ob-
servable signal. When the background cannot be re-
liably predicted a priori, as is often the case, it is im-
portant to be able to constrain its rate in sidebands
surrounding the signal region. Therefore, avoiding
such degeneracy is critical to performing successful
measurements.

We note that, from Fig. 8, it is clear that ap-
plying su�ciently tight cuts to the adversarial clas-
sifier causes significant background morphing, par-
ticularly when compared to the ⌧

21

-based discrimi-
nants. However, the solid lines of Fig. 9 illustrate
the case where the background rate is uncertain
and hence benefits from sideband constraints. We
see that the optimal significance is realized for the
adversarial classifier at a relatively high signal e�-
ciency of roughly 90%, where the background mor-
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FIG. 13. Discovery significance for a hypothetical sig-
nal after optimizing thresholds on the output of networks
parameterized in mZ0 trained with an adversarial or tra-
ditional approaches, compared to thresholds on ⌧21, ⌧

0
21

and ⌧ 00
21 or to placing no threshold. Significance is eval-

uated for the case of 50% background uncertainty.

phing is quite limited (Fig. 7). Hence, the adversar-
ial classifier achieves its goal of optimizing the trade-
o↵ between correlation and discrimination power.

We also note that the decorrelation could poten-

9

to look like the signal (see Fig. 8), the discovery sig-
nificance is improved. This is as expected; if the
background rate and shape are well known, then the
lack of constraining sidebands is not detrimental.

For the case of the larger background rate un-
certainty, thresholds on ⌧

21

provide a smaller boost
to the significance. The large relative uncertainty
on the background will penalize configurations in
which the background is sculpted to resemble the
signal, preventing the data from constraining the
background rate in the sidebands. Thresholds on
⌧ 0
21

and ⌧ 00
21

are slightly stronger, as expected, due to
their decreased correlation with jet mass. Thresh-
olds on the output of the classifier network, which
has the strongest discrimination power, only weak-
ens the discovery significance, due to the background
mass distortion. However, the adversarial network
is still capable of powerful discrimination which im-
proves the discovery power at high signal e�ciency,
around 90%. Table I shows the maximal discovery
significance for each case. The qualitative results
persist for other signal-to-background ratios.
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“ L E A R N  T O  P I V O T ”  →  “ L E A R N  T O  G R O O M ”

•We can use the same adversarial strategy to be robust to variations in 
pileup and underlying event. 

• combined with GRU/LSTM gating, the network should learn to ignore 
parts of the jet that are not robust to these variations 

• eg. network will learn a jet grooming/pruning/trimming/… strategy.  

• Compare traditional grooming with weights assigned to constituents.

28
*Work in progress with Gilles Louppe



G R A P H  C O N V O L U T I O N A L  N E U R A L  N E T W O R K S

•So far the compositional structure we are iterating over is fixed by the jet algorithm.  

• Hyperparameter α interpolating kt → anti-kt  

•Would like to optimize α, but that leads to discontinuous change in jet clustering history. 

•Instead, consider a graph over particles with adjacency matrix given by d
α

ii’  

• Defines a graph convolutional neural network, we can propagate gradients wrt α! 

• potentially promote constant α to a non-linear function of hidden state α(ht)

29

Spectral Networks and Deep Locally Connected
Networks on Graphs

Joan Bruna
New York University

bruna@cims.nyu.edu

Wojciech Zaremba
New York University

woj.zaremba@gmail.com

Arthur Szlam
The City College of New York
aszlam@ccny.cuny.edu

Yann LeCun
New York University
yann@cs.nyu.edu

Abstract

Convolutional Neural Networks are extremely efficient architectures in image and
audio recognition tasks, thanks to their ability to exploit the local translational
invariance of signal classes over their domain. In this paper we consider possi-
ble generalizations of CNNs to signals defined on more general domains without
the action of a translation group. In particular, we propose two constructions,
one based upon a hierarchical clustering of the domain, and another based on the
spectrum of the graph Laplacian. We show through experiments that for low-
dimensional graphs it is possible to learn convolutional layers with a number of
parameters independent of the input size, resulting in efficient deep architectures.

1 Introduction

Convolutional Neural Networks (CNNs) have been extremely succesful in machine learning prob-
lems where the coordinates of the underlying data representation have a grid structure (in 1, 2 and 3
dimensions), and the data to be studied in those coordinates has translational equivariance/invariance
with respect to this grid. Speech [11], images [14, 20, 22] or video [23, 18] are prominent examples
that fall into this category.

On a regular grid, a CNN is able to exploit several structures that play nicely together to greatly
reduce the number of parameters in the system:

1. The translation structure, allowing the use of filters instead of generic linear maps and
hence weight sharing.

2. The metric on the grid, allowing compactly supported filters, whose support is typically
much smaller than the size of the input signals.

3. The multiscale dyadic clustering of the grid, allowing subsampling, implemented through
stride convolutions and pooling.

If there are n input coordinates on a grid in d dimensions, a fully connected layer with m outputs
requires n · m parameters, which in typical operating regimes amounts to a complexity of O(n2

)

parameters. Using arbitrary filters instead of generic fully connected layers reduces the complexity
to O(n) parameters per feature map, as does using the metric structure by building a “locally con-
nected” net [8, 17]. Using the two together gives O(k · S) parameters, where k is the number of
feature maps and S is the support of the filters, and as a result the learning complexity is independent
of n. Finally, using the multiscale dyadic clustering allows each succesive layer to use a factor of 2d
less (spatial) coordinates per filter.
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C O N C L U S I O N S
•Jet physics is a very active area of machine learning research  

• previously it has been dominated by an image-based analogy (using fixed input 
representation that requires pre-processing) 

• we operate on a variable length set of 4-momenta and use a QCD-inspired 
network topology. The network topology matters.  

• QCD-inspired appears more IRC-robust.  

• To do: “learn to pivot” → “learn to groom" 

• requires much less data to train (we used ~100x less data) 

• we can extend ↑ to “event embedding” & use all the particles in an event as input! 
Intermediate jets representation helps. Also extend ↓ to “particle embedding” 

• Code: https://github.com/glouppe/recnn (would like to translate to PyTorch) 

•Many more ideas for hybrids of QCD & machine learning!
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