SUSY and Dark Matter at the Muon Collider Patrick Fox the model to which all other models should be compared - Most general spacetime symmetry allowed by nature - Ubiquitous in string theory - Solves the hierarchy problem, grand unification - •(more than) Doubles the particle content of SM lots of things to measure the model to which all other models should be comparedand is - Most general spacetime symmetry allowed by nature - Ubiquitous in string theory - Solves the hierarchy problem, grand unification - •(more than) Doubles the particle content of SM lots of things to measure the model to which all other models should be compared ...and is - Most general spacetime symmetry allowed by nature - Ubiquitous in string theory - Solves the hierarchy problem, grand unification - •(more than) Doubles the particle content of SM lots of things to measure the model to which all other models should be compared little higgs ...and is ex dims - Most general spacetime symmetry allowed by nature - Ubiquitous in string theory - Solves the hierarchy problem, grand unification - •(more than) Doubles the particle content of SM lots of things to measure the model to which all other models should be compared little higgs • • • • ...and is ex dims - Most general spacetime symmetry allowed by nature - Ubiquitous in string theory - Solves the hierarchy problem, grand unification - •(more than) Doubles the particle content of SM lots of things to measure the model to which all other models should be compared little higgs SUSY ex dims ???? - Most general spacetime symmetry allowed by nature - Ubiquitous in string theory - Solves the hierarchy problem, grand unification - (more than) Doubles the particle content of SM lots of things to measure Pre-LEP: $$SM_2$$ etc $$\Delta m_{\phi}^2 \sim \frac{\lambda^2}{16\pi^2} \Lambda^2$$ Fundamental scalars not good news for QFT Naturalness implies new physics at the weak scale Pre-LEP: $$-\frac{1}{2}$$ $-\frac{1}{2}$ $$\Delta m_{\phi}^2 \sim \frac{\lambda^2}{16\pi^2} \Lambda^2$$ Fundamental scalars not good news for QFT Naturalness implies new physics at the weak scale see also Adam Martin, Yang Bai, George Fleming Pre-LEP: $$\left(\frac{\lambda^2}{16\pi^2}\Lambda^2 \to \frac{y^2}{16\pi^2}m_{\tilde{t}}^2 \log \frac{\Lambda}{m_{\tilde{t}}}\right)$$ $$m_h^2 \le m_z^2 \cos^2 2\beta$$ Post-LEP: $m_h \gtrsim 115 \; \mathrm{GeV}$ 1% fine tuning, superpartners ~ I TeV Less minimal variants of SUSY (NMSSM etc) Post-LEP: $m_h \gtrsim 115 \; \mathrm{GeV}$ 1% fine tuning, superpartners ~ I TeV Less minimal variants of SUSY (NMSSM etc) #### **SUSY at LHC?** $m_{\tilde{q}} \gtrsim 600 \text{ GeV}$ $m_{\tilde{g}} \gtrsim 750 \text{ GeV}$ #### **SUSY at LHC?** $m_{\tilde{q}} \gtrsim 600 \text{ GeV}$ $m_{\tilde{g}} \gtrsim 750 \text{ GeV}$ #### Benchmarks Snowmass, 2001 #### Benchmarks Snowmass, 2001 #### Joe Lykken, Muon Collider workshop 2009: #### **Short version of this talk** Question: Is it possible to identify the physics targets of the post-LHC energy frontier collider before we have any LHC results? Answer: No LHC will provide (part) of the benchmarks for us (Or tell us to look elsewhere) #### LHC produces squarks and gluinos Observes cascade decays, MET Measures edges and endpoints - mass differences $M_{\ell\ell}^{\rm max} = m_{\tilde{N}_2} (1 - m_{\tilde{\ell}}^2 / m_{\tilde{N}_2}^2)^{1/2} (1 - m_{\tilde{N}_1}^2 / m_{\tilde{\ell}}^2)^{1/2}.$ Electroweak production of -inos and sleptons harder Overall mass scales, but accurate masses difficult Couplings? Determining LSP mass is difficult Spin: SUSY vs UED "Typically" lighter than coloured states, but Measuring couplings and mixing parameters requires some amount of polarization Tests models of SUSY breaking, high scale predictions Unified gaugino masses: $M_1:M_2:M_3\approx 1:2:7$ Fig. 5.14: Running of (a) gaugino mass parameters and (b) first-generation sfermion mass parameters and $M_{H,2}^2$ assuming 1% errors on sfermion masses and heavy Higgs boson masses. The width corresponds to 1σ errors. Unified gaugino masses: $M_1:M_2:M_3\approx 1:2:7$ 04[225] Fig. 5.15: The 1σ bands for the sfermion and Higgs mass parameters in TeV² at $M_{\rm GUT}$. The following cases are considered: (dark boxes) slepton masses can be measured with an accuracy of 2% and the remaining particle masses within 7%; (light gray boxes) slepton masses can be measured with an accuracy of 2% and the remaining particle masses within 3%; (dark gray boxes) sfermion and heavy Higgs boson masses can be measured with an accuracy of 1%. MC gives access to particle masses, couplings, widths, mixing angles $\frac{\mathrm{Events}/\mathrm{GeV}}{}$ $$E_{\rm max,min} = \frac{\sqrt{s}}{4} (1 - m_{\tilde{N}_1}^2 / m_{\tilde{\ell}}^2) [1 \pm (1 - 4m_{\tilde{\ell}}^2 / s)^{1/2}]$$ $$\mu^+\mu^- \to \tilde{\ell}^+\tilde{\ell}^- \to \ell^+\ell^-\tilde{N}_1\tilde{N}_1$$ Q: See new states, how do we know it's SUSY? #### A: Spin $$\frac{d\sigma}{d\cos\theta} \propto 1 \pm \cos^2\theta$$ [hep-ph/0502041] #### **Dark Matter** In SUSY and many complete "top-down" models precise measurements of masses and couplings allows us to test cosmology in the collider LSP (neutralino) as a WIMP #### **Dark Matter** #### see also Graham Kribs In SUSY and many complete "top-down" models precise measurements of masses and couplings allows us to test cosmology in the collider #### LSP (neutralino) as a WIMP ## A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle" $$\chi\chi\leftrightarrow \bar{f}f$$ $$\Omega h^2 \approx 0.1 \left(\frac{m/T}{20}\right) \left(\frac{g_*}{80}\right)^{-1} \left(\frac{3 \times 10^{-26} \text{cm}^2 \text{s}^{-1}}{\sigma v}\right)$$ ### Amazing (misleading?) fact: [Feng and Kumar] $$\langle \sigma v \rangle \sim \frac{\alpha_W^2}{M_W^2} \sim 1 \,\mathrm{pb} \sim 3 \times 10^{-26} \mathrm{cm}^2 \mathrm{s}^{-1}$$ ## A weak scale particle (WIMP) freezes out to leave the correct relic abundance - the WIMP "miracle" $$\chi\chi\leftrightarrow \bar{f}f$$ $$\Omega h^2 \approx 0.1 \left(\frac{m/T}{20}\right) \left(\frac{g_*}{80}\right)^{-1} \left(\frac{3 \times 10^{-26} \text{cm}^2 \text{s}^{-1}}{\sigma v}\right)$$ #### Amazing (misleading?) fact: [Feng and Kumar] $$\langle \sigma v \rangle \sim \frac{\alpha_W^2}{M_W^2} \sim 1 \,\mathrm{pb} \sim 3 \times 10^{-26} \mathrm{cm}^2 \mathrm{s}^{-1}$$ SUSY neutralino in ball park #### **MDI - Muon DM Interface** Direct detection Look down Low rate, low energy recoil events in underground labs Collider searches Look small Missing energy events at colliders #### **Dark Matter Direct Detection** #### Dark Matter at the Tevatron Mono-jet + $$E_T$$ $$E_T > 80 \, \text{GeV}$$ $p_T(j1) > 80 \, \text{GeV}$ $p_T(j2) < 30 \, \text{GeV}$ $p_T(j3) < 20 \, \text{GeV}$ | Background | Number of Events | |-----------------|------------------| | Z -> nu nu | 3203 +/- 137 | | W -> tau nu | 2010 +/- 69 | | W -> mu nu | 1570 +/- 54 | | W -> e nu | 824 +/- 28 | | Z->11 | 87 +/- 3 | | QCD | 708 +/- 146 | | Gamma plus Jet | 209 +/- 41 | | Non-Collision | 52 +/- 52 | | Total Predicted | 8663 +/- 332 | | Data Observed | 8449 | #### Dark Matter at the Tevatron [arXiv:1005.3797] Mono-jet + $$E_T$$ $$E_T > 80 \, \mathrm{GeV}$$ $p_T(j1) > 80 \, \mathrm{GeV}$ $p_T(j2) < 30 \, \mathrm{GeV}$ $p_T(j3) < 20 \, \mathrm{GeV}$ | Background | Number of Events | |-----------------|------------------| | Z -> nu nu | 3203 +/- 137 | | W -> tau nu | 2010 +/- 69 | | W -> mu nu | 1570 +/- 54 | | W -> e nu | 824 +/- 28 | | Z->11 | 87 +/- 3 | | QCD | 708 +/- 146 | | Gamma plus Jet | 209 +/- 41 | | Non-Collision | 52 +/- 52 | | Total Predicted | 8663 +/- 332 | | Data Observed | 8449 | #### **DM** at Tevatron #### Spin independent Spin dependent #### **DM** at Tevatron ## Spin independent World's best limits at low mass Spin dependent #### **DM** at Tevatron ## Spin independent World's best limits ## World's best limits, up to ~200 GeV Spin dependent #### **DM** at LEP LEP can place bounds on DM-electron coupling Alternative avenue of attack, "cleaner" environment Hadrophobic DM proposed as explanation of DAMA Equal couplings to quarks and leptons? Mono-jets \longleftrightarrow Mono-photons $$q \leftrightarrow \ell$$ $$\mathcal{O}_{V} = \frac{(\bar{\chi}\gamma_{\mu}\chi)(\bar{\ell}\gamma^{\mu}\ell)}{\Lambda^{2}}, \qquad (\text{vector, } s\text{-channel})$$ $$\mathcal{O}_{S} = \frac{(\bar{\chi}\chi)(\bar{\ell}\ell)}{\Lambda^{2}}, \qquad (\text{scalar, } s\text{-channel})$$ $$\mathcal{O}_{A} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)}{\Lambda^{2}}, \qquad (\text{axial vector, } s\text{-channel})$$ $$\mathcal{O}_{t} = \frac{(\bar{\chi}\ell)(\bar{\ell}\chi)}{\Lambda^{2}}, \qquad (\text{scalar, } t\text{-channel})$$ #### LEP is cleaner, use spectral information #### Equal couplings to all fermions #### Conclusions LHC will soon inform us about the Higgs and the solution to the hierarchy problem Whether SUSY or another BSM model we must quickly determine what a MC can tell us Ideal for precision determination of BSM parameters Probe DM in the lab, free of astrophysics uncertainties Nature may soon help us with the benchmarks