Some Thoughts About Rare Kaon Decays

Ulrich Haisch University of Oxford

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV -scale new physics
o motivated by naturalness of electroweak scale
o motivated by precision unification of couplings
o not motivated, but why not
o based on her/his personal taste(s) or prejudice(s)

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV-scale new physics
o motivated by naturalness of electroweak scale
o motivated by precision unification of couplings
o not motivated, but why not
o based on her/his personal taste(s) or prejudice(s)
- Experiments should try to falsify theories - especially true for indirect (as opposed to production) probes!

Theoretical Expectations

Clearly an oxymoron, because every theorist expects different TeV -scale new physics
o motivated by naturalness of electroweak scale
o motivated by precision unification of couplings
o not motivated, but why not
o based on her/his personal taste(s) or prejudice(s)

- Experiments should try to falsify theories - especially true for indirect (as opposed to production) probes!
- Imagine to kill supersymmetry, extra dimensions $\&$ technicolor at once by signal defying expectations

Two Ways to Study New Physics

Two Ways to Study New Physics

Top-down approach:
o concrete model of new physics
o predict observables \& correlations directly
o are smoking gun signals possible?
$\|$ Stefania's \& Wolfgang's talks

Two Ways to Study New Physics

Top-down approach:
o concrete model of new physics
o predict observables \& correlations directly
o are smoking gun signals possible?
$\xrightarrow{\|}$ Stefania's \& Wolfgang's talks

Bottom-up approach:
o what data can be obtained?

- how is it parametrized efficiently?
O what can be learned about model classes?

Bottom-Up Approach

- Fix minimal set of assumptions:
o new physics enters at $\mathrm{M}_{\mathrm{NP}}=\mathrm{O}(1 \mathrm{TeV})$, allowing for systematic expansion in powers of $M_{W} / M_{N P} \ll 1$
o standard model (SM) is weakly coupled to new sector (technical assumption could be relaxed)
Assumptions satisfied in many SM extensions

Bottom-Up Approach

- Fix minimal set of assumptions:
o new physics enters at $\mathrm{M}_{\mathrm{NP}}=\mathrm{O}(1 \mathrm{TeV})$, allowing for systematic expansion in powers of $M_{W} / M_{\mathrm{NP}} \ll 1$
o standard model (SM) is weakly coupled to new sector (technical assumption could be relaxed)
Assumptions satisfied in many SM extensions
- Use effective $\mathrm{U}(1)_{\mathrm{Y} \times \mathrm{SU}} \mathrm{S}()_{\mathrm{L}}$ invariant Lagrangian

$$
\mathcal{L}_{\text {eff }}=\sum_{i} C_{i} Q_{i}
$$

Similar to weak Hamiltonian with simple matching between two, but fewer operators per coefficient

Bottom-Up Approach Cont'd

Effective framework takes care of assumptions, but no further prejudice

Bottom-Up Approach Cont'd

- Effective framework takes care of assumptions, but no further prejudice
- In setup can now ask \& answer important questions:
o to what degree are $\mathrm{K} \rightarrow \pi v \overline{\mathrm{v}}$ channels linked to other kaon modes, such as $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mid+1-\Delta \mathrm{M}_{\mathrm{K}}, \varepsilon_{\mathrm{K}} \& \varepsilon^{\prime} / \varepsilon$?
\bigcirc in particular, do these constraints rule out large effects in neutrino modes?
o can one design models that break correlations \& if so, does this lead to other observable signatures?

○ ...

Kaon Scoresheet

	Operator	$\begin{gathered} 12 \\ \vdots \\ + \\ k \\ \uparrow \\ + \\ \vdots \end{gathered}$	$$		$$	$\begin{gathered} \stackrel{\lambda}{ \pm} \\ \uparrow \\ \uparrow \\ \vdots \end{gathered}$	$\begin{array}{\|c\|} \hline I \\ I \\ e^{2} \\ 0 \\ \uparrow \\ \uparrow \\ + \\ \vdots \\ e^{k} \end{array}$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\psi}{\varkappa}$	先	in MSSM?
$Q_{l q}^{(1)}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	-	-	\checkmark
$Q_{l q}^{(3)}$	$\left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L}\right)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	-	-	\checkmark
$Q_{q e}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right)$	-	-	\checkmark	hs	hs	\checkmark	\checkmark	-	-	small
$Q_{l d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	-	-	small
$Q_{e d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right)$	-	-	\checkmark	hs	-	-	-	-	-	small
$Q_{l q}^{\dagger}$	$\left(\bar{u}_{R} S_{L}\right)\left(\bar{l}_{R} L_{L}\right)$	-	-	-	-	\checkmark	\checkmark	\checkmark	-	-	tiny
$\left(Q_{l q}^{t}\right)^{\dagger}$	$\left(\bar{u}_{R} \sigma_{\mu \nu} S_{L}\right)\left(\bar{l}_{R} \sigma^{\mu \nu} L_{L}\right)$	-	-	-	-	-	?	?	-	-	tiny
$Q_{q d e}$	$\left(\bar{d}_{R} S_{L}\right)\left(\bar{L}_{L} l_{R}\right)$	-	-	\checkmark	\checkmark	-	-	-	-	-	tiny
$Q_{\text {qde }}^{\dagger}$	$\left(\bar{D}_{L} s_{R}\right)\left(\bar{l}_{R} L_{L}\right)$	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	large $\tan \beta$
$Q_{\phi q}^{(1)}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	\checkmark	(\checkmark)	\checkmark
$Q_{\phi q}^{(3)}$	$\left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \sigma^{i} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	\checkmark	(\checkmark)	\checkmark
$Q_{\phi d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\phi^{\dagger} D^{\mu} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	\checkmark	(\checkmark)	large $\tan \beta$ (non-MFV)

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Kaon Scoresheet

	Operator		$$	$\begin{gathered} \underset{c}{1} \\ \underset{\rightharpoonup}{t} \\ k \\ \uparrow \\ \uparrow \\ \vdots \end{gathered}$	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{ \pm} \\ & \uparrow \\ & \pm \\ & \pm \end{aligned}$		$\begin{aligned} & E \\ & y \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{*}$	こ	in MSSM?
$\begin{gathered} \hline Q_{l q}^{(1)} \\ Q_{l q}^{(3)} \end{gathered}$	$\begin{gathered} \left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \\ \left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L}\right) \end{gathered}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { hs } \\ & \text { hs } \end{aligned}$	hs	\checkmark	\checkmark	-	-	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$
$Q_{q e}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right)$	-	-	\checkmark	hs	hs	\checkmark	\checkmark	-	-	small
$Q_{l d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	-	-	small
$Q_{e d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right)$	-	-	\checkmark	hs	-	-	-	-	-	small
$Q_{l q}^{\dagger}$	$\left(\bar{u}_{R} S_{L}\right)\left(\bar{l}_{R} L_{L}\right)$	-	-	-	-	\checkmark	\checkmark	\checkmark	-	-	tiny
$\left(Q_{l q}^{t}\right)^{\dagger}$	$\left(\bar{u}_{R} \sigma_{\mu \nu} S_{L}\right)\left(\bar{l}_{R} \sigma^{\mu \nu} L_{L}\right)$	-	-	-	-	-	?	?	-	-	tiny
$Q_{q d e}$	$\left(\bar{d}_{R} S_{L}\right)\left(\bar{L}_{L} l_{R}\right)$	-	-	\checkmark	\checkmark	-	-	-	-	-	tiny
$Q_{q d e}^{\dagger}$	$\left(\bar{D}_{L} s_{R}\right)\left(\bar{l}_{R} L_{L}\right)$	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	large $\tan \beta$
$Q_{\phi q}^{(1)}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	\checkmark	(V)	\checkmark
$Q_{\phi q}^{(3)}$	$\left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \sigma^{i} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	\checkmark	(V)	\checkmark
$Q_{\phi d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\phi^{\dagger} D^{\mu} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	\checkmark	(V)	large $\tan \beta$ (non-MFV)

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Kaon Scoresheet

		$$	$$	$$	$$	$\begin{gathered} \stackrel{\imath}{2} \\ \uparrow \\ \uparrow \\ \vdots \\ i \end{gathered}$	$$	$\begin{aligned} & 5 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\frac{\psi}{-}$	\approx	in MSSM?
$\begin{aligned} & Q_{l q}^{(1)} \\ & Q_{l q}^{(3)} \end{aligned}$	$\begin{gathered} \left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \\ \left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L}\right) \end{gathered}$	\checkmark \checkmark	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \text { hs } \\ & \text { hs } \end{aligned}$	hs	$-$	$-$		—	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$
$Q_{q e}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right)$	-	-	\checkmark	hs	hs	\checkmark	\checkmark	-	-	small
$Q_{l d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	-	-	small
$\begin{gathered} Q_{e d} \\ Q_{l q}^{\dagger} \\ \left(Q_{l q}^{t}\right)^{\dagger} \\ Q_{q d e} \\ Q_{q d e}^{\dagger} \\ \hline \end{gathered}$	$\begin{gathered} \left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right) \\ \left(\bar{u}_{R} S_{L}\right)\left(\bar{l}_{R} L_{L}\right) \\ \left(\bar{u}_{R} \sigma_{\mu \nu} S_{L}\right)\left(\bar{l}_{R} \sigma^{\mu \nu} L_{L}\right) \\ \left(\bar{d}_{R} S_{L}\right)\left(\bar{L}_{L} l_{R}\right) \\ \left(\bar{D}_{L} s_{R}\right)\left(\bar{l}_{R} L_{L}\right) \\ \hline \end{gathered}$	-	-	$\begin{aligned} & \checkmark \\ & - \\ & - \\ & \checkmark \\ & \checkmark \end{aligned}$	hs - - \checkmark \checkmark	- \checkmark - - \checkmark	$\begin{aligned} & - \\ & \checkmark \\ & ? \\ & - \\ & \checkmark \end{aligned}$	$\begin{aligned} & - \\ & ? \\ & ? \\ & - \end{aligned}$	- - -	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	small tiny tiny tiny large $\tan \beta$
$\begin{gathered} \hline Q_{\phi q}^{(1)} \\ Q_{\phi q}^{(3)} \\ Q_{\phi d} \end{gathered}$	$\begin{gathered} \left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \phi\right) \\ \left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \sigma^{i} \phi\right) \\ \left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\phi^{\dagger} D^{\mu} \phi\right) \end{gathered}$	$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$	\checkmark \checkmark \checkmark	\checkmark \checkmark \checkmark	hs hs hs	-	\checkmark	-	\checkmark \checkmark \checkmark	$\begin{aligned} & (\checkmark) \\ & (\checkmark) \\ & (\checkmark) \end{aligned}$	$\begin{gathered} \boldsymbol{\checkmark} \\ \boldsymbol{\checkmark} \\ \text { large } \tan \beta(\text { non-MFV }) \end{gathered}$

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Kaon Scoresheet

	Operator	$\begin{aligned} & 1 \\ & \mathbf{A} \\ & + \\ & k \\ & \uparrow \\ & + \\ & \vdots \end{aligned}$	$$		$$	$\begin{gathered} \stackrel{\imath}{2} \\ \uparrow \\ i \\ \vdots \\ i \end{gathered}$		2 0 0 0	$\stackrel{\psi}{-}$	※	in MSSM?
$\begin{aligned} & Q_{l q}^{(1)} \\ & Q_{l q}^{(3)} \end{aligned}$	$\begin{gathered} \left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} L_{L}\right) \\ \left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\bar{L}_{L} \gamma^{\mu} \sigma^{i} L_{L}\right) \end{gathered}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$	$\begin{gathered} \text { hs } \\ \text { hs } \end{gathered}$	hs	$-$	$-$	—	$-$	$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$
$Q_{q e}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\bar{l}_{R} \gamma^{\mu} l_{R}\right)$	-	-	\checkmark	hs	hs	\checkmark	\checkmark	-	-	small
$Q_{l d}$ $Q_{e d}$ $Q_{l q}^{\dagger}$	$\left.\begin{array}{c} \left(\bar{d}_{R} \gamma_{\mu} s_{R}\right) \\ \left(\bar{d}_{R} \gamma_{\mu} s_{R}\right) \\ \left(\bar{u}_{R} S_{L}\right) \end{array}\right) 6 \mathrm{op}$									les	small small tiny
$\left(Q_{l q}^{t}\right)^{\dagger}$	$\left(\bar{u}_{R} \sigma_{\mu \nu} S_{L}\right)\left(\bar{l}_{R} \sigma^{\mu \nu} L_{L}\right)$		-		-	-	?	?	-	-	tiny
$Q_{q d e}$	$\left(\bar{d}_{R} S_{L}\right)\left(\bar{L}_{L} l_{R}\right)$	-	-	\checkmark	\checkmark	-	-	-	-	-	tiny
$Q_{\text {qde }}^{\dagger}$	$\left(\bar{D}_{L} s_{R}\right)\left(\bar{l}_{R} L_{L}\right)$	-	-	\checkmark		\checkmark	\checkmark	\checkmark	-	-	large $\tan \beta$
$Q_{\phi q}^{(1)}$	$\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	\checkmark	(\checkmark)	\checkmark
$Q_{\phi q}^{(3)}$	$\left(\bar{D}_{L} \gamma_{\mu} \sigma^{i} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \sigma^{i} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	\checkmark	(\checkmark)	\checkmark
$Q_{\phi d}$	$\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\phi^{\dagger} D^{\mu} \phi\right)$	\checkmark	\checkmark	\checkmark	hs	-	-	-	\checkmark	(\checkmark)	large $\tan \beta$ (non-MFV)

[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Z-Penguin Operators

- Three operators involving Higgs field affect largest number of observables, so let's focus on them

Z-Penguin Operators

- Three operators involving Higgs field affect largest number of observables, so let's focus on them
- After electroweak symmetry breaking, one has

$$
\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \phi\right) \| \bar{d}_{L} \gamma_{\mu} s_{L} Z^{\mu}+\bar{u}_{L} \gamma_{\mu} c_{L} Z^{\mu}+\ldots
$$

which is left-handed (LH) Z-penguin well-known from MSSM, Randall-Sundrum (RS) models, ...

Z-Penguin Operators

- Three operators involving Higgs field affect largest number of observables, so let's focus on them
- After electroweak symmetry breaking, one has

$$
\left(\bar{D}_{L} \gamma_{\mu} S_{L}\right)\left(\phi^{\dagger} D^{\mu} \phi\right) \| \bar{d}_{L} \gamma_{\mu} s_{L} Z^{\mu}+\bar{u}_{L} \gamma_{\mu} c_{L} Z^{\mu}+\ldots
$$

which is left-handed (LH) Z-penguin well-known from MSSM, Randall-Sundrum (RS) models, ...

Z-Penguin Operators Cont'd

Similarly, there is right-handed (RH) Z-penguin

$$
\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\phi^{\dagger} D^{\mu} \phi\right) \Perp \bar{d}_{R} \gamma_{\mu} s_{R} Z^{\mu}+\ldots
$$

which has no counterpart in SM

Z-Penguin Operators Cont'd

\square Similarly, there is right-handed (RH) Z-penguin

$$
\left(\bar{d}_{R} \gamma_{\mu} s_{R}\right)\left(\phi^{\dagger} D^{\mu} \phi\right) \Perp \bar{d}_{R} \gamma_{\mu} s_{R} Z^{\mu}+\ldots
$$

which has no counterpart in SM

- Parametrize flavor-changing Z-boson vertices by

$$
\left(V_{t s}^{*} V_{t d} C_{\mathrm{SM}}+C_{\mathrm{NP}}\right) \bar{d}_{L} \gamma_{\mu} s_{L} Z^{\mu}+\widetilde{C}_{\mathrm{NP}} \bar{d}_{R} \gamma_{\mu} s_{R} Z^{\mu}
$$

where V_{ij} are Cabibbo-Kobayashi-Maskawa (CKM) elements \& $\mathrm{C}_{\mathrm{SM}} \approx 0.8$ is value of Inami-Lim function characterizing LH Z-penguin in SM

Anatomy of Neutrino Modes

- After summation over neutrino flavors, branching ratios of $\mathrm{K} \rightarrow \pi v \bar{v}$ channels can be written as

$$
\begin{gathered}
\operatorname{Br}\left(K_{L} \rightarrow \pi^{0} \nu \bar{\nu}\right) \propto(\operatorname{Im} X)^{2} \\
\operatorname{Br}\left(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\gamma)\right) \propto|X|^{2} \\
X=\frac{\lambda_{t}}{\lambda^{5}} X_{t}+\frac{\operatorname{Re} \lambda_{c}}{\lambda} P_{c, u}+\frac{1}{\lambda^{5}}\left(C_{\mathrm{NP}}+\widetilde{C}_{\mathrm{NP}}\right) \\
\lambda_{i}=V_{i s}^{*} V_{i d}, \quad \lambda \approx 0.23, \quad X_{t} \approx 1.5, \quad P_{c, u} \approx 0.4
\end{gathered}
$$

Z-Penguins in Neutrino Modes

$$
\begin{gathered}
\left|C_{\mathrm{NP}}\right| \leq 0.5\left|\lambda_{t} C_{\mathrm{SM}}\right| \\
\left|C_{\mathrm{NP}}\right| \leq\left|\lambda_{t} C_{\mathrm{SM}}\right| \\
\left|C_{\mathrm{NP}}\right| \leq 2\left|\lambda_{t} C_{\mathrm{SM}}\right| \\
C_{\mathrm{NP}}=\left|C_{\mathrm{NP}}\right| e^{i \phi_{C}}
\end{gathered}
$$

same results obtained for RH Z-penguin
[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Z-Penguins in Neutrino Modes

$$
\begin{aligned}
\left|C_{\mathrm{NP}}\right| & \leq 0.5\left|\lambda_{t} C_{\mathrm{SM}}\right| \\
\left|C_{\mathrm{NP}}\right| & \leq\left|\lambda_{t} C_{\mathrm{SM}}\right| \\
\left|C_{\mathrm{NP}}\right| & \leq 2\left|\lambda_{t} C_{\mathrm{SM}}\right| \\
-C_{\mathrm{NP}} & \propto \lambda_{t} C_{\mathrm{SM}}
\end{aligned}
$$

in minimal-flavor
violating (MFV)
models deviations
very constraint
[see S. Jäger, talk at NA62 Physics Handbook Workshop]

Anatomy of Leptonic Modes

$\square K_{L} \rightarrow \pi^{0} l^{+1}$ modes receive contributions from (axial-) vector (A, V), (pseudo-) scalar (P, S), ... operators:

$\gamma \sum$ A, H

$$
\begin{gathered}
Q_{V}=\left(\bar{d} \gamma_{\mu} s\right)\left(\bar{l} \gamma^{\mu} l\right) \\
Q_{A}=\left(\bar{d} \gamma_{\mu} s\right)\left(\bar{l} \gamma^{\mu} \gamma_{5} l\right)
\end{gathered}
$$

$$
Q_{S}=(\bar{d} s)(\bar{l} l)
$$

$$
Q_{P}=(\bar{d} s)\left(\bar{l} \gamma_{5} l\right)
$$

[for further details see Joachim's \& Phillipe's talks]

Anatomy of Leptonic Modes Cont'd

- In many explicit SM extensions such as RS scenarios, little Higgs models, scenarios with extra chiral/vectorlike matter, ..., contribution from Q_{A} dominates over those of Q_{v}, Qs $^{\&} \mathrm{Q}_{\mathrm{p}}$:

$$
\begin{gathered}
C_{V} \propto\left(\frac{1}{s_{w}^{2}}-4\right)\left(C_{\mathrm{NP}}+\tilde{C}_{\mathrm{NP}}\right) \approx 0.4\left(C_{\mathrm{NP}}+\tilde{C}_{\mathrm{NP}}\right) \\
C_{A} \propto-\frac{1}{s_{w}^{2}}\left(C_{\mathrm{NP}}-\tilde{C}_{\mathrm{NP}}\right) \approx-4.4\left(C_{\mathrm{NP}}-\tilde{C}_{\mathrm{NP}}\right) \\
C_{S, P} \propto m_{s} m_{l}
\end{gathered}
$$

Correlations of Leptonic Modes

- LH Z-penguin
in scenarios with Q_{A} dominance, deviations in $\mathrm{K}_{\mathrm{L}} \rightarrow \pi^{0} \mathrm{I}+1$ - channels strongly correlated
[see F. Mescia, C. Smith \& S. Trine, hep-ph/0606081]

Correlations of Leptonic Modes

- $\mathrm{LH} Z$-penguin
$=-$ SM rescaled
V, A only
presence of photon penguin can break Q_{A} dominance \& opens up parameter space
[see F. Mescia, C. Smith \& S. Trine, hep-ph/0606081]

Correlations of Leptonic Modes

S, P also
-- - $=$ SM rescaled V, A only

rare semileptonic kaon channels also allow to disentangle S, P from V, A contributions
[see F. Mescia, C. Smith \& S. Trine, hep-ph/0606081]

Anatomy of ε_{K}

- Most severe constraints on flavor structure in many non-MFV models due to CP violation in kaon sector:

$$
Q_{L L}^{s d}=\left(\bar{s}_{L} \gamma_{\mu} d_{L}\right)\left(\bar{s}_{L} \gamma^{\mu} d_{L}\right)
$$

$\varepsilon_{\mathrm{K}} \&$ Rare K Decay Link

- SM extensions fall into two classes, those with pure LH structure \& those with both LH \& RH currents:

$\varepsilon_{\mathrm{K}} \&$ Rare K Decay Link

- SM extensions fall into two classes, those with pure LH structure \& those with both LH \& RH currents:

while in LH case, ε_{K} restricts phase in $s \rightarrow d$ transition, connection between $\Delta \mathrm{S}=2,1$ lost, if RH interactions present

$\varepsilon_{\mathrm{K}} \&$ Rare K Decay Link Cont'd

$\left|C_{\mathrm{NP}}\right| \leq 0.5\left|\lambda_{t} C_{\mathrm{SM}}\right|$
$\square\left|C_{\mathrm{NP}}\right| \leq\left|\lambda_{t} C_{\mathrm{SM}}\right|$
$\square\left|C_{\mathrm{NP}}\right| \leq 2\left|\lambda_{t} C_{\mathrm{SM}}\right|$

- LH currents only
if new physics in ε_{K} is LH, only two branches of solution allowed for $\mathrm{K} \rightarrow \pi v \bar{v}$
[see M. Blanke, arXiv:0904.2528 [hep-ph]]

$\varepsilon_{\mathrm{K}} \&$ Rare K Decay Link Cont'd

$\left|C_{\mathrm{NP}}\right| \leq 0.5\left|\lambda_{t} C_{\mathrm{SM}}\right|$
$\square\left|C_{\mathrm{NP}}\right| \leq\left|\lambda_{t} C_{\mathrm{SM}}\right|$
$\square\left|C_{\mathrm{NP}}\right| \leq 2\left|\lambda_{t} C_{\mathrm{SM}}\right|$

- LH currents only
pattern of deviations is found in certain Z^{\prime} boson scenarios, little Higgs models, ...
[see M. Blanke, arXiv:0904.2528 [hep-ph]]

$\varepsilon_{\mathrm{K}} \&$ Rare K Decay Link Cont'd

$\begin{aligned} &\left|C_{\mathrm{NP}}\right| \leq 0.5\left|\lambda_{t} C_{\mathrm{SM}}\right| \\ &\left|C_{\mathrm{NP}}\right| \leq\left|\lambda_{t} C_{\mathrm{SM}}\right| \\ &-\left|C_{\mathrm{NP}}\right| \leq 2\left|\lambda_{t} C_{\mathrm{SM}}\right| \\ &- \text { LH currents only }\end{aligned}$
but pattern not generic \& absent in MSSM, RS, ..., as $\mathrm{Q}_{\mathrm{LR}}^{\mathrm{dd}}$ renders dominant effect in ε_{K}
[see M. Blanke, arXiv:0904.2528 [hep-ph]]

Anatomy of $\varepsilon^{\prime} / \varepsilon$

- Prediction for $\varepsilon^{\prime} / \varepsilon$ very sensitive to interplay between $\mathrm{QCD}\left(\mathrm{Q}_{6}\right) \&$ electroweak $\left(\mathrm{Q}_{8}\right)$ penguin operators:

$$
\begin{aligned}
\frac{\epsilon^{\prime}}{\epsilon} \propto-\operatorname{Im} & {\left[\lambda_{t}\left(-1.4+13.8 R_{6}-6.6 R_{8}\right)\right.} \\
& \left.+\left(1.5+0.1 R_{6}-13.3 R_{8}\right)\left(C_{\mathrm{NP}}-\widetilde{C}_{\mathrm{NP}}\right)\right]
\end{aligned}
$$

$$
\| R_{6} \propto\left\langle(\pi \pi)_{I=0}\right| Q_{6}|K\rangle \underset{\sim}{\in}[0.8,2.0]
$$

$$
\| R_{8} \propto\left\langle(\pi \pi)_{I=2}\right| Q_{8}|K\rangle \underset{\sim}{ }[0.8,1.2]
$$

$\varepsilon^{\prime} / \varepsilon$ Strikes Back

[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]

$\varepsilon^{\prime} / \varepsilon$ Strikes Back

stringent correlation between CP-violating kaon observables present in MSSM, RS, compositeness, ...

$\varepsilon^{\prime} / \varepsilon$ "sleeping beauty" of flavor physics: when will lattice's kiss wake her?
[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]

Conclusions \& Outlook

- In view of textbook "measurements" of CP phase in $\mathrm{B}_{\text {s }}$ system, $B \rightarrow K^{*} l^{+l} \& B_{s} \rightarrow \mu^{+} \mu^{-}$by LHCb, rare decays of kaons last place where indisputable signals of new physics could show up

Conclusions \& Outlook

- In view of textbook "measurements" of CP phase in B_{s} system, $B \rightarrow K^{*} l^{+} l^{-} \& B_{s} \rightarrow \mu^{+} \mu^{-}$by LHCb , rare decays of kaons last place where indisputable signals of new physics could show up

Effects of $\mathrm{O}(50 \%)$ in both $\mathrm{K} \rightarrow \pi v \bar{v}$ modes are not at variance with other existing constraints $\left(\varepsilon^{\prime} / \varepsilon, \ldots\right)$. In view of cleanness of rare kaon modes, such deviations would provide smoking-gun signal for new physics

Conclusions \& Outlook

- In view of textbook "measurements" of CP phase in B_{s} system, $B \rightarrow K^{*} l^{+} l^{-} \& B_{s} \rightarrow \mu^{+} \mu^{-}$by LHCb , rare decays of kaons last place where indisputable signals of new physics could show up
\square Effects of $\mathrm{O}(50 \%)$ in both $\mathrm{K} \rightarrow \pi v \bar{v}$ modes are not at variance with other existing constraints $\left(\varepsilon^{\prime} / \varepsilon, \ldots\right)$. In view of cleanness of rare kaon modes, such deviations would provide smoking-gun signal for new physics
- Since kaon observables feature testable correlations, mandatory to measure as many rare kaon modes as possible. Only experiment can unravel flavor mystery!

Sources of Inspiration

- Talk by S. Jäger given at NA62 Physics Handbook Workshop, 10-12 December 2009 CERN
- F. Mescia, C. Smith \& S. Trine, hep-ph/0606081
- M. Blanke, arXiv:0904.2528 [hep-ph]
- M. Bauer, S. Casagrande, U. Haisch \& M. Neubert, arXiv:0912.1625 [hep-ph]

Gluonic Penguins in $\varepsilon^{\prime} / \varepsilon$

- Chromomagnetic penguins $\left(\mathrm{Q}_{8 \mathrm{~g}}^{(\prime)}\right)$ can also give large correction to $\varepsilon^{\prime} / \varepsilon$. But in general (meaning MSSM, RS, \ldots) there is no strict correlation with Z penguin. Often possible to decouple effects. For example in RS:

$$
C_{8 g}^{(\prime)} \propto\left\{\lambda m_{s}, \frac{m_{s}}{\lambda}\right\} \frac{Y_{*}^{2}}{m_{t}}, \quad C \propto \frac{A^{2} \lambda^{5}}{Y_{*}^{2} F_{t_{R}}^{2}}, \quad \widetilde{C} \propto \frac{m_{d} m_{s} F_{t_{R}}^{2}}{A^{2} \lambda^{5} m_{t}^{2}}
$$

