Some Thoughts About Rare Kaon Decays

Ulrich Haisch University of Oxford

2012 Project X Physics Study (PXPS12) 14–23 June 2012, Fermi National Accelerator Laboratory

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV-scale new physics
 - o motivated by naturalness of electroweak scale
 o motivated by precision unification of couplings
 o not motivated, but why not
 o based on her/his personal taste(s) or prejudice(s)

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV-scale new physics
 - o motivated by naturalness of electroweak scale
 o motivated by precision unification of couplings
 o not motivated, but why not
 - o based on her/his personal taste(s) or prejudice(s)

Experiments should try to falsify theories - especially true for indirect (as opposed to production) probes!

Theoretical Expectations

- Clearly an oxymoron, because every theorist expects different TeV-scale new physics
 - o motivated by naturalness of electroweak scale
 o motivated by precision unification of couplings
 o not motivated, but why not
 - o based on her/his personal taste(s) or prejudice(s)

Experiments should try to falsify theories - especially true for indirect (as opposed to production) probes!

Imagine to kill supersymmetry, extra dimensions & technicolor at once by signal defying expectations

Two Ways to Study New Physics

Two Ways to Study New Physics

Top-down approach:

o concrete model of new physics
o predict observables & correlations directly
o are smoking gun signals possible?

Two Ways to Study New Physics

Top-down approach:

o concrete model of new physics
o predict observables & correlations directly
o are smoking gun signals possible?

Bottom-up approach:

- o what data can be obtained?
- how is it parametrized efficiently?
- what can be learned about model classes?

Stefania's & Wolfgang's talks

Bottom-Up Approach

Fix minimal set of assumptions:

o new physics enters at M_{NP} = O(1 TeV), allowing for systematic expansion in powers of M_W/M_{NP} << 1
 o standard model (SM) is weakly coupled to new sector (technical assumption could be relaxed)
 Assumptions satisfied in many SM extensions

Bottom-Up Approach

Fix minimal set of assumptions:

o new physics enters at $M_{NP} = O(1 \text{ TeV})$, allowing for systematic expansion in powers of $M_W/M_{NP} << 1$

• standard model (SM) is weakly coupled to new sector (technical assumption could be relaxed)

Assumptions satisfied in many SM extensions

Use effective U(1)_Y×SU(2)_L invariant Lagrangian

$$\mathcal{L}_{\text{eff}} = \sum_{i} C_i Q_i$$

Similar to weak Hamiltonian with simple matching between two, but fewer operators per coefficient

Bottom-Up Approach Cont'd

Effective framework takes care of assumptions, but no further prejudice

Bottom-Up Approach Cont'd

- Effective framework takes care of assumptions, but no further prejudice
- In setup can now ask & answer important questions:
 - **o** to what degree are $K \rightarrow \pi v \overline{v}$ channels linked to other kaon modes, such as $K_L \rightarrow \pi^0 l^+ l^-$, ΔM_K , $\epsilon_K \& \epsilon'/\epsilon$?
 - in particular, do these constraints rule out large effects in neutrino modes?
 - can one design models that break correlations & if so, does this lead to other observable signatures?

0 ...

	Operator	$K^+ \to \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 \nu \bar{ u}$	$K_L \to \pi^0 l^+ l^-$	$K_L \to l^+ l^-$	$K^+ \to l^+\nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵK	in MSSM?
$Q_{lq}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L) (\bar{L}_L \gamma^\mu L_L)$	~	\checkmark	\checkmark	hs	-	-	-	-		\checkmark
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\bar{L}_L \gamma^\mu \sigma^i L_L)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	_	_	\checkmark
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L) (\bar{l}_R \gamma^\mu l_R)$		-	\checkmark	hs	hs	\checkmark	\checkmark	-	-	small
Q_{ld}	$(\bar{d}_R\gamma_\mu s_R)(\bar{L}_L\gamma^\mu L_L)$	\checkmark	\checkmark	\checkmark	hs		-	-	-	-	small
Q_{ed}	$(\bar{d}_R\gamma_\mu s_R)(\bar{l}_R\gamma^\mu l_R)$		-	\checkmark	hs	_	-	-	-	—	small
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(\bar{l}_R L_L)$		-	-	_	\checkmark	\checkmark	\checkmark	_		tiny
$(Q_{lq}^t)^\dagger$	$(\bar{u}_R \sigma_{\mu\nu} S_L) (\bar{l}_R \sigma^{\mu\nu} L_L)$		-	_		-	?	?	-	—	tiny
Q_{qde}	$(\bar{d}_R S_L)(\bar{L}_L l_R)$		—	\checkmark	\checkmark	_	_		_	_	tiny
Q_{qde}^{\dagger}	$(ar{D}_L s_R)(ar{l}_R L_L)$		-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_	—	large $\tan\beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs				1	(√)	\checkmark
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L)(\phi^\dagger D^\mu \sigma^i \phi)$	~	\checkmark	1	hs	hs	1	1	1	(√)	\checkmark
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs	_			1	(√)	large $\tan\beta$ (non-MFV)

	Operator	$K^+ \to \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 \nu \bar{ u}$	$K_L \to \pi^0 l^+ l^-$	$K_L \to l^+ l^-$	$K^+ \to l^+ \nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	in MSSM?
$Q_{lq}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L) (\bar{L}_L \gamma^\mu L_L)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	—	—	\checkmark
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\bar{L}_L \gamma^\mu \sigma^i L_L)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	—	—	\checkmark
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L) (\bar{l}_R \gamma^\mu l_R)$	—	—	\checkmark	hs	hs	\checkmark	~		_	small
Q_{ld}	$(\bar{d}_R \gamma_\mu s_R)(\bar{L}_L \gamma^\mu L_L)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	—	—	small
Q_{ed}	$(\bar{d}_R\gamma_\mu s_R)(\bar{l}_R\gamma^\mu l_R)$	—	—	\checkmark	hs	-	-	-	-	-	small
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(\bar{l}_R L_L)$	—	—	_	_	\checkmark	\checkmark	1	—	—	tiny
$(Q_{lq}^t)^\dagger$	$(\bar{u}_R \sigma_{\mu\nu} S_L) (\bar{l}_R \sigma^{\mu\nu} L_L)$	—	—	_			?	?	_	—	tiny
Q_{qde}	$(ar{d}_R S_L)(ar{L}_L l_R)$	—	—	\checkmark	\checkmark	_			_	_	tiny
Q_{qde}^{\dagger}	$(ar{D}_L s_R)(ar{l}_R L_L)$	—	—	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	—	large $\tan\beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	\checkmark	(√)	\checkmark
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L)(\phi^\dagger D^\mu \sigma^i \phi)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	\checkmark	(√)	\checkmark
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	\checkmark	(√)	large $\tan\beta$ (non-MFV)

	Operator	$K^+ \to \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 \nu \bar{ u}$	$K_L \to \pi^0 l^+ l^-$	$K_L \to l^+ l^-$	$K^+ \to l^+ \nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	in MSSM?
$Q_{lq}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L) (\bar{L}_L \gamma^\mu L_L)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	—	—	\checkmark
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\bar{L}_L \gamma^\mu \sigma^i L_L)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	—	—	\checkmark
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L) (\bar{l}_R \gamma^\mu l_R)$	—	—	\checkmark	hs	hs	\checkmark	\checkmark	—	—	small
Q_{ld}	$(\bar{d}_R \gamma_\mu s_R) (\bar{L}_L \gamma^\mu L_L)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	—	—	small
Q_{ed}	$(\bar{d}_R\gamma_\mu s_R)(\bar{l}_R\gamma^\mu l_R)$	—	—	\checkmark	hs	_	—	—	—	—	small
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(\bar{l}_R L_L)$	—	—	—	—	\checkmark	\checkmark	\checkmark	—	—	tiny
$(Q_{lq}^t)^\dagger$	$(\bar{u}_R \sigma_{\mu\nu} S_L) (\bar{l}_R \sigma^{\mu\nu} L_L)$	—	—	—	_		?	?	—	—	tiny
Q_{qde}	$(ar{d}_R S_L)(ar{L}_L l_R)$	—	—	\checkmark	\checkmark				—	—	tiny
Q_{qde}^{\dagger}	$(ar{D}_L s_R)(ar{l}_R L_L)$	—	—	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	—	—	large $\tan\beta$
$Q_{\phi q}^{(1)}$	$(ar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	\checkmark	(√)	\checkmark
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\phi^\dagger D^\mu \sigma^i \phi)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	\checkmark	(√)	\checkmark
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	\checkmark	(√)	large $\tan\beta$ (non-MFV)

	Operator	$K^+ \to \pi^+ \nu \bar{\nu}$	$K_L o \pi^0 \nu ar u$	$K_L \to \pi^0 l^+ l^-$	$K_L \to l^+ l^-$	$K^+ \to l^+ \nu$	$P_T(K^+ \to \pi^0 \mu^+ \nu)$	$\Delta_{ m CKM}$	ϵ'/ϵ	ϵ_K	in MSSM?
$Q_{lq}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L) (\bar{L}_L \gamma^\mu L_L)$	\checkmark	\checkmark	\checkmark	hs		—	—	—		\checkmark
$Q_{lq}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L) (\bar{L}_L \gamma^\mu \sigma^i L_L)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	—	—	\checkmark
Q_{qe}	$(\bar{D}_L \gamma_\mu S_L)(\bar{l}_R \gamma^\mu l_R)$		—	\checkmark	hs	hs	\checkmark	\checkmark	_		small
Q_{ld}	$(ar{d}_R\gamma_\mu s_R)(ar{d}_R\gamma_\mu s_R))$	small									
Q_{ed}	$(\bar{d}_R \gamma_\mu s_R)$ 6 operators, 6 observables										small
Q_{lq}^{\dagger}	$(\bar{u}_R S_L)(\bar{v}_R)$										tiny
$(Q_{lq}^t)^\dagger$	$(\bar{u}_R \sigma_{\mu\nu} S_L) (\bar{l}_R \sigma^{\mu\nu} L_L)$	—	—	—	_		?	?	—		tiny
Q_{qde}	$(\bar{d}_R S_L)(\bar{L}_L l_R)$	—	—	\checkmark	\checkmark			—	—		tiny
Q_{qde}^{\dagger}	$(ar{D}_L s_R)(ar{l}_R L_L)$	—	—	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	—		large $\tan\beta$
$Q_{\phi q}^{(1)}$	$(\bar{D}_L \gamma_\mu S_L)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs	—	—	—	\checkmark	(√)	\checkmark
$Q_{\phi q}^{(3)}$	$(\bar{D}_L \gamma_\mu \sigma^i S_L)(\phi^\dagger D^\mu \sigma^i \phi)$	\checkmark	\checkmark	\checkmark	hs	hs	\checkmark	\checkmark	\checkmark	(√)	\checkmark
$Q_{\phi d}$	$(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi)$	\checkmark	\checkmark	\checkmark	hs	—		—	\checkmark	(√)	large $\tan\beta$ (non-MFV)

Z-Penguin Operators

Three operators involving Higgs field affect largest number of observables, so let's focus on them

Z-Penguin Operators

- Three operators involving Higgs field affect largest number of observables, so let's focus on them
- After electroweak symmetry breaking, one has

 $(\bar{D}_L \gamma_\mu S_L)(\phi^{\dagger} D^{\mu} \phi) \implies \bar{d}_L \gamma_\mu s_L Z^{\mu} + \bar{u}_L \gamma_\mu c_L Z^{\mu} + \dots$

which is left-handed (LH) Z-penguin well-known from MSSM, Randall-Sundrum (RS) models, ...

Z-Penguin Operators

- Three operators involving Higgs field affect largest number of observables, so let's focus on them
- After electroweak symmetry breaking, one has

 $(\bar{D}_L \gamma_\mu S_L)(\phi^{\dagger} D^{\mu} \phi) \implies \bar{d}_L \gamma_\mu s_L Z^{\mu} + \bar{u}_L \gamma_\mu c_L Z^{\mu} + \dots$

which is left-handed (LH) Z-penguin well-known from MSSM, Randall-Sundrum (RS) models, ...

Z-Penguin Operators Cont'd

Similarly, there is right-handed (RH) Z-penguin

 $(\bar{d}_R \gamma_\mu s_R)(\phi^\dagger D^\mu \phi) \implies \bar{d}_R \gamma_\mu s_R Z^\mu + \dots$

which has no counterpart in SM

Z-Penguin Operators Cont'd

Similarly, there is right-handed (RH) Z-penguin

 $(\bar{d}_R\gamma_\mu s_R)(\phi^\dagger D^\mu \phi) \implies \bar{d}_R\gamma_\mu s_R Z^\mu + \dots$

which has no counterpart in SM

Parametrize flavor-changing Z-boson vertices by

 $\left(V_{ts}^* V_{td} C_{\rm SM} + \frac{C_{\rm NP}}{C_{\rm NP}}\right) \bar{d}_L \gamma_\mu s_L Z^\mu + \frac{\widetilde{C}_{\rm NP}}{\widetilde{d}_R} \bar{d}_R \gamma_\mu s_R Z^\mu$

where V_{ij} are Cabibbo-Kobayashi-Maskawa (CKM) elements & $C_{SM} \approx 0.8$ is value of Inami-Lim function characterizing LH Z-penguin in SM

Anatomy of Neutrino Modes

After summation over neutrino flavors, branching ratios of $K \rightarrow \pi v \overline{v}$ channels can be written as

$$\operatorname{Br}(K_L \to \pi^0 \nu \bar{\nu}) \propto (\operatorname{Im} X)^2$$

$$\operatorname{Br}(K^+ \to \pi^+ \nu \bar{\nu}(\gamma)) \propto |X|^2$$

$$X = \frac{\lambda_t}{\lambda^5} X_t + \frac{\text{Re}\lambda_c}{\lambda} P_{c,u} + \frac{1}{\lambda^5} \left(C_{\text{NP}} + \tilde{C}_{\text{NP}} \right)$$

 $\lambda_i = V_{is}^* V_{id}, \quad \lambda \approx 0.23, \quad X_t \approx 1.5, \quad P_{c,u} \approx 0.4$

[for further details see Joachim's talk]

Z-Penguins in Neutrino Modes

Z-Penguins in Neutrino Modes

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

- $C_{\rm NP} \propto \lambda_t C_{\rm SM}$

in minimal-flavor violating (MFV) models deviations very constraint

Anatomy of Leptonic Modes

■ $K_L \rightarrow \pi^0 l^+ l^-$ modes receive contributions from (axial-) vector (A, V), (pseudo-)scalar (P, S), ... operators:

[for further details see Joachim's & Phillipe's talks]

Anatomy of Leptonic Modes Cont'd

In many explicit SM extensions such as RS scenarios, little Higgs models, scenarios with extra chiral/vectorlike matter, ..., contribution from QA dominates over those of QV, Qs & QP:

$$C_V \propto \left(\frac{1}{s_w^2} - 4\right) \left(C_{\rm NP} + \tilde{C}_{\rm NP}\right) \approx 0.4 \left(C_{\rm NP} + \tilde{C}_{\rm NP}\right)$$
$$C_A \propto -\frac{1}{s_w^2} \left(C_{\rm NP} - \tilde{C}_{\rm NP}\right) \approx -4.4 \left(C_{\rm NP} - \tilde{C}_{\rm NP}\right)$$

 $C_{S,P} \propto m_s m_l$

Correlations of Leptonic Modes

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]

Correlations of Leptonic Modes

LH Z-penguin
SM rescaled

V, A only

presence of photon penguin can break Q_A dominance & opens up parameter space

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]

Correlations of Leptonic Modes

S, P also

----- SM rescaled

V, A only

rare semileptonic kaon channels also allow to disentangle S, P from V, A contributions

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]

Anatomy of EK

Most severe constraints on flavor structure in many non-MFV models due to CP violation in kaon sector:

$$\epsilon_K \propto \operatorname{Im} \left(C_{LL}^{sd} + 115 C_{LR}^{sd} \right)$$

 s_L SM $Q_{LL}^{sd} = (\bar{s}_L \gamma_\mu d_L) (\bar{s}_L \gamma^\mu d_L)$ t d_L S_L W^{\pm} d_R s_R RS h $Q_{LR}^{sd} = (\bar{s}_R d_L)(\bar{s}_L d_R)$ s_L

EK & Rare K Decay Link

SM extensions fall into two classes, those with pure LH structure & those with both LH & RH currents:

EK & Rare K Decay Link

SM extensions fall into two classes, those with pure LH structure & those with both LH & RH currents:

EK & Rare K Decay Link Cont'd

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

- LH currents only

if new physics in \mathcal{E}_{K} is LH, only two branches of solution allowed for $K \rightarrow \pi v \overline{v}$

EK & Rare K Decay Link Cont'd

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

- LH currents only

pattern of deviations is found in certain Z'boson scenarios, little Higgs models, ...

[[]see M. Blanke, arXiv:0904.2528 [hep-ph]]

EK & Rare K Decay Link Cont'd

 $|C_{\rm NP}| \le 0.5 |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le |\lambda_t C_{\rm SM}|$ $|C_{\rm NP}| \le 2 |\lambda_t C_{\rm SM}|$

- LH currents only

but pattern not generic & absent in MSSM, RS, ..., as Q^{sd}_{LR} renders dominant effect in E_K

Anatomy of ϵ'/ϵ

Prediction for ε'/ε very sensitive to interplay between QCD (Q₆) & electroweak (Q₈) penguin operators:

$$\frac{\epsilon'}{\epsilon} \propto -\mathrm{Im} \left[\lambda_t \left(-1.4 + 13.8R_6 - 6.6R_8 \right) + \left(1.5 + 0.1R_6 - 13.3R_8 \right) \left(C_{\mathrm{NP}} - \widetilde{C}_{\mathrm{NP}} \right) \right]$$

$$R_6 \propto \langle (\pi\pi)_{I=0} | Q_6 | K \rangle \in [0.8, 2.0]$$

$$d \xrightarrow{Z} q q$$

$$R_8 \propto \langle (\pi\pi)_{I=2} | Q_8 | K \rangle \in [0.8, 1.2]$$

[see M. Bauer et al., arXiv:0912.1625 [hep-ph]]

ε'/ε Strikes Back

[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]

17

ε'/ε Strikes Back

stringent correlation between CP-violating kaon observables present in MSSM, RS, compositeness, ...

ε'/ε "sleeping beauty" of flavor physics: when will lattice's kiss wake her?

[see S. Jäger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]

Conclusions & Outlook

In view of textbook "measurements" of CP phase in B_s system, B → K*l+l- & B_s → µ+µ- by LHCb, rare decays of kaons last place where indisputable signals of new physics could show up

Conclusions & Outlook

In view of textbook "measurements" of CP phase in B_s system, B → K*l+l- & B_s → µ+µ- by LHCb, rare decays of kaons last place where indisputable signals of new physics could show up

Effects of O(50%) in both $K \rightarrow \pi v \bar{v}$ modes are not at variance with other existing constraints (ϵ'/ϵ , ...). In view of cleanness of rare kaon modes, such deviations would provide smoking-gun signal for new physics

Conclusions & Outlook

In view of textbook "measurements" of CP phase in B_s system, B → K*l+l- & B_s → µ+µ- by LHCb, rare decays of kaons last place where indisputable signals of new physics could show up

Effects of O(50%) in both K → πνν modes are not at variance with other existing constraints (ε'/ε, ...). In view of cleanness of rare kaon modes, such deviations would provide smoking-gun signal for new physics

Since kaon observables feature testable correlations, mandatory to measure as many rare kaon modes as possible. Only experiment can unravel flavor mystery!

Sources of Inspiration

- Talk by S. Jäger given at NA62 Physics Handbook Workshop, 10–12 December 2009 CERN
- F. Mescia, C. Smith & S. Trine, hep-ph/0606081
- M. Blanke, arXiv:0904.2528 [hep-ph]

....

M. Bauer, S. Casagrande, U. Haisch & M. Neubert, arXiv:0912.1625 [hep-ph]

Gluonic Penguins in ϵ'/ϵ

Chromomagnetic penguins (Q^(')_{8g}) can also give large correction to ɛ'/ɛ. But in general (meaning MSSM, RS, ...) there is no strict correlation with Z penguin. Often possible to decouple effects. For example in RS:

$$C_{8g}^{(\prime)} \propto \left\{\lambda m_s, \frac{m_s}{\lambda}\right\} \frac{Y_*^2}{m_t}, \quad C \propto \frac{A^2 \lambda^5}{Y_*^2 F_{t_R}^2}, \quad \tilde{C} \propto \frac{m_d m_s F_{t_R}^2}{A^2 \lambda^5 m_t^2}$$

[see M. Bauer et al., arXiv:0912.1625 [hep-ph]]