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different TeV-scale new physics

o motivated by naturalness of electroweak scale

o motivated by precision unification of couplings
O not motivated, but why not
o based on her/his personal taste(s) or prejudice(s)

Experiments should try to falsify theories - especially

true for indirect (as opposed to production) probes!

Imagine to kill supersymmetry, extra dimensions &
technicolor at once by signal defying expectations
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Two Ways to Study New Physics

O concrete model of new
physics
o predict observables &

correlations directly

O are smoking gun
signals possible?

imp Stefania’s & Wolfgang’s talks im%p discussed in this talk



Bottom-Up Approach

Fix minimal set of assumptions:

o0 new physics enters at Mnp = O(1 TeV), allowing for
systematic expansion in powers of Mw/Mnp << 1

o standard model (SM) 1s weakly coupled to new

sector (technical assumption could be relaxed)

Assumptions satisfied in many SM extensions
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o0 new physics enters at Mnp = O(1 TeV), allowing for
systematic expansion in powers of Mw/Mnp << 1

o standard model (SM) 1s weakly coupled to new

sector (technical assumption could be relaxed)

Assumptions satisfied in many SM extensions

Use effective U(1)yxSU(2)L invarant Lagrangian
['eff = Z C’L Qz

Similar to weak Hamiltonian with simple matching
between two, but fewer operators per coefhicient

[see S. Jiger, talk at NA62 Physics Handbook Workshop]
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Bottom-Up Approach Cont'd

Effective framework takes care of assumptions, but no
further prejudice

In setup can now ask & answer important questions:

o to what degree are K — 7tvV channels linked to other
kaon modes, such as Kr, —= mVI*l;, AMk, ek & €'/g?

o 1n particular, do these constraints rule out large
effects 1n neutrino modes?

o can one design models that break correlations &
if so, does this lead to other observable signatures?

Q=

[see S. Jiger, talk at NA62 Physics Handbook Workshop]



Kaon Scoresheet

)
B | | +
?‘35@5%{@{%&
FC% +T 1 i 1 j j <Cl) S
Sl B R e A _
Operator Q? in MSSM?
QY | DPrySu)Tiv*Ly) | v | v | v |hs v
QY | Dryuo'S) Ly o' L)| v [V [ v [bs|ns | v [ v [—]| — v
Qge (Drvu.SL)(IrY*IR) —— e e e e S e e = small
Q14 (dryusr)(Lry"*Lr) v I v |V |hs small
Qed (drYusr) IRV IR) — e small
Ql, (@rSL)(IRLL) Vel == tiny
(th)T (ERUWSL)(_RUWLL) e TR PR P tiny
Qqde (drSr)(LilR) — | —|vIVY tiny
Ql 4, (Drsr)(IRLr) — | —=|v|v|v|v|v|—|— large tan
Q%) | (DvSc)@D*e) | v v |y |bs v |(¥) v
Q%) | (DLyuo'S)(¢'Dra'e) | v |V [V |bs |hs [V [V |V [ (V) v
Qopd (CZR’Y,LSR)(quD“(/ﬁ) VIV IV |hs v (J) large tan 8 (non-MFV)

[see S. Jiger, talk at NA62 Physics Handbook Workshop]



Kaon Scoresheet

% ~ | 2 E
- :: 2 s Sl |
Operator = & in MSSM?

QY | (PryuSp) Loy Ly) v | bs v
Q2 | (Drvuo'Se) (L o'Ly) Vi bs|bs|v |V |—|— v
Qge (Drvu.SL)(IrY*IR) Vihs|lhs|V IV |— | — small
Q14 (CZR’YMSR)(EL'YMLL) Y | hs small
Qed (drYusr) IRV IR) v | hs small
Ql, (@rSL)(IRLL) S et o 4 — | — tiny
(Qi)"| (@r0uSL)(IrRe* Ly) 21?2 |—| — tiny
(Qqde (drSr)(LilR) 745 2 tiny
Qac (Drsg)(IrL1) v iv|v|v|v|—]|— large tan
Qv | (DryuSi)(6'D"¢) v | s v | (V) v
Q%) | (DLyuo'Se)(ef Do) Vi ns|bs|v | v |V |[() v
Q¢d (drvusr) (¢! D" ) v | hs v [(Y) large tan 3 (non-MFV)

[see S. Jiger, talk at NA62 Physics Handbook Workshop]



Kaon Scoresheet

Operator

Observable

(
Q2 | (Dryuo'Sp)(Lry 'Ly
Dr7,:51)

Qed (drYusr)(IRY"IR)
Q) (@rSr)(IrLL)
(Q1,)'| (@rouSL)(Iro*"Ly)
Qqde (drSr)(LilR)
i (Drsr)(IrLL)

Q% | (DryuSi) (¢t DHe)
QY | (Dryuo'St)(
Qpd (dry.5r) (0" D*9)

¢'DHa'p)

£
T
-
<
in MSSM?
v
hs v
hs small
small
S small
v tiny
— tiny
— tiny
v large tan
v |(v) v
bs | v | v [ v [(¥) v
v [ (V)| large tan 6 (non-MFV)

[see S. Jiger, talk at NA62 Physics Handbook Workshop]




Kaon Scoresheet

b
> |
Operator in MSSM?

QY | (DryvuSu)(Ley"Ly) hs II! v
Ql(g) (DL’yuaiSL)( YHo'Ly, hs |hs |V | V v
@ge (Drv,St) (g™ ig) hs | hs small
Q1d (JR’YMSR)( small
0w | (@wsn) © Operators, 6 observables ==
G (urSL)( tiny
Q)" (@rouwSL)(IRo*" Ly) = tiny
Qqde (drSL)(LilR) A tiny
or: (D;sp)(rLr) v large tan 3
Q%) | (DryuSL)(¢'Dg) hs v [(¥) v
Q%) | (Drue'Se) (6D o'e) hs | hs v () v
Qsd (JRWSR)((bTD’“‘qb) hs v (J ) large tan 8 (non-MFV)

[see S. Jiger, talk at NA62 Physics Handbook Workshop]




Z-Penguin Operators

Three operators involving Higgs field affect largest
number of observables, so let’s focus on them



Z.-Penguin Operators

Three operators involving Higgs held affect largest
number of observables, so let’s focus on them

After electroweak symmetry breaking, one has
(DL’)/MSL)(¢TD'LL¢) II- CZL’)/MSLZ'M —|—”L_LL7MCLZ'LL 4+ ...

which 1s left-handed (LH) Z-penguin well-known from
MSSM, Randall-Sundrum (RS) models, ...




Z.-Penguin Operators

Three operators involving Higgs held affect largest

number of observables, so let’s focus on them

A

ter electroweak symmetry breaking, one has

(DL’)/MSL)(¢TD'LL¢) II- CZL’)/MSLZ’M—F”L_LLW’MCLZM—I—...

which 1s left-handed (LH) Z-penguin well-known from
MSSM, Randall-Sundrum (RS) models, ...




Z-Penguin Operators Cont'd

Similarly, there 1s right-handed (RH) Z-penguin
(drv.5R)(¢' D" ¢) wp dry.spRZ" +...

which has no counterpart in SM



Z-Penguin Operators Cont'd

Similarly, there 1s right-handed (RH) Z-penguin
(drv.5R)(¢' D" ¢) wp dry.spRZ" +...
which has no counterpart in SM

Parametrize flavor-changing Z-boson vertices by

(V;;;Vvtd OSM =5 ONP) d_L’)/,UJSLZ’u *{—.CZR’)/'UJSRZ’LL

where V;; are Cabibbo-Kobayashi-Maskawa (CKM)

elements & Csp = 0.8 1s value of Inami-Iim function

characterizing LH Z-penguin in SM



Anatomy of Neutrino Modes

After summation over neutrino flavors, branching
ratios of K — vV channels can be written as

Br(K; — mvi) o (.X)2
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[for further details see Joachim’s talk]



Z.-Penguins 1n Neutrino Modes
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TOT]

Cnp = |Cnp| €'9°

Br(K; — 71°wW)

same results obtained

for RH Z-penguin
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[see S. Jiger, talk at NA62 Physics Handbook Workshop]



Z.-Penguins 1n Neutrino Modes

Lo gl

Br(K; — 71°w)
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Br(K™ —» 77w (y)) [10711]

[see S. Jiger, talk at NA62 Physics Handbook Workshop]
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in minimal-flavor
violating (MFV)
models deviations
very constraint



Anatomy of Leptonic Modes

Kr — m’l*]' modes receive contributions from (axial-)

vector (A, V), (pseudo-)scalar (P, S), ... operators:

—— - =

= = AH
N 4 |
Qy—(d -0 Qs = (

O ) ST Qp = (ds)(lsl)

[for further details see Joachim’s & Phillipe’s talks]
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Anatomy of Leptonic Modes Cont'd

In many explicit SM extensions such as RS scenarios,
little Higgs models, scenarios with extra chiral/vector-
like matter, ..., contribution from QA dominates over

those of Qv, Os & Op:

o (3 ) (- 0 -~ @l R

11



Correlations of Leptonic Modes

6
i — LH Z-penguin
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strongly correlated

Br(K; —» i’ete™) [107!1]

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]
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Correlations of Leptonic Modes
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[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]
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Br(K, —» 7't p)

[see F. Mescia, C. Smith & S. Trine, hep-ph/0606081]

Correlations of Leptonic Modes
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S, P also

®- SM rescaled

V, A only

rare semileptonic kaon
channels also allow to
disentangle S, P from
V, A contributions
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Anatomy of €k

Most severe constraints on flavor structure 1n many

non-MFV models due to CP violation in kaon sector:

€K %.(Ci% +.Ci%)

S T
SM -+ dL
df: =gt 5%
RS SR dpr

7% = (5rdr)(5rdr) <mm \ ==
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ek & Rare K Decay Link

SM extensions fall into two classes, those with pure

[LH structure & those with both LH & RH currents:

SI, . dr,
|
|
|
|

dr, I SL
|

SL : dr
|
|
|
|

dr, ; SR

[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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ek & Rare K Decay Link

SM extensions fall into two classes, those with pure

[LH structure & those with both LH & RH currents:

dL ST,
I
ST, dL

SL

dr,

5L dR while in LH case, €k
restricts phase in s — d
transition, connection

dr, SR

between AS = 2,1 lost, it
RH interactions present

[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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ek & Rare K Decay [.ink Cont'd
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if new physics 1n €x 1s
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K — v
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Br(K; — 71°wW)

pattern of deviations
is found 1n certain Z'-

boson scenarios, little

Higgs models, ...
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[see M. Blanke, arXiv:0904.2528 [hep-ph]]
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Anatomy of €'/¢

Prediction for €'/€ very sensitive to interplay between

OCD (Qg) & electroweak (Qg) penguin operators:

SPINERF
= 'R6 _.RS) (CNP —.) }

d g q

>ZTO‘UO‘< q mp g o< ((77)r=0|@6|K) € [0.8,2.0]
d Z q
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[see M. Bauer et al., arXiv:0912.1625 [hep-ph]]
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e'/e Strikes Back
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[see S. Jiger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:0912.1625 [hep-ph]]
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e'/e Strikes Back

stringent

g'/e “slee
of flavor

correlation

between CP-violating
kaon observables

present in MSSM,

RS, compositeness, ...

'

bing beauty”
bhysics:

when will

e T R v v R Y wake her

Br(K* - ntw (y)) [107!]

[see S. Jiger, talk at NA62 Physics Handbook Workshop; M. Bauer et al., arXiv:

lattice’s kiss
?

0912.1625 [hep-ph]]
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Conclusions & Outlook

In view of textbook “measurements” of CP phase in B
system, B = K*I*]I- & B = p*p by LHCD, rare decays
of kaons last place where indisputable signals of new

physics could show up
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Conclusions & Outlook

In view of textbook “measurements” of CP phase in B
system, B = K*I*]I- & B = p*p by LHCD, rare decays
of kaons last place where indisputable signals of new
physics could show up

Effects of O(50%) in both K — 7tvV modes are not at

variance with other existing constraints (€'/¢, ...). In
view of cleanness of rare kaon modes, such deviations
would provide smoking-gun signal for new physics

Since kaon observables feature testable correlations,
mandatory to measure as many rare kaon modes as
possible. Only experiment can unravel flavor mystery!
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Sources of Inspiration

Talk by S. Jdger given at NA62 Physics Handbook
Workshop, 10-12 December 2009 CERN

F. Mescia, C. Smith & S. Trine, hep-ph/0606081
M. Blanke, arXiv:0904.2528 [hep-ph]

M. Bauer, S. Casagrande, U. Haisch & M. Neubert,
arX1v:0912.1625 [hep-ph]
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Gluonic Penguins 1n e'/e
R,L (k) dL R
(1)

¢

Chromomagnetic penguins (Q(gg) can also give large

correction to €/€. But in general (meaning MSSM,
RS, ...) there 1s no strict correlation with Z penguin.

Often possible to decouple effects. For example in RS:

o Coc—. C e

[see M. Bauer et al., arXiv:0912.1625 [hep-ph]]
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