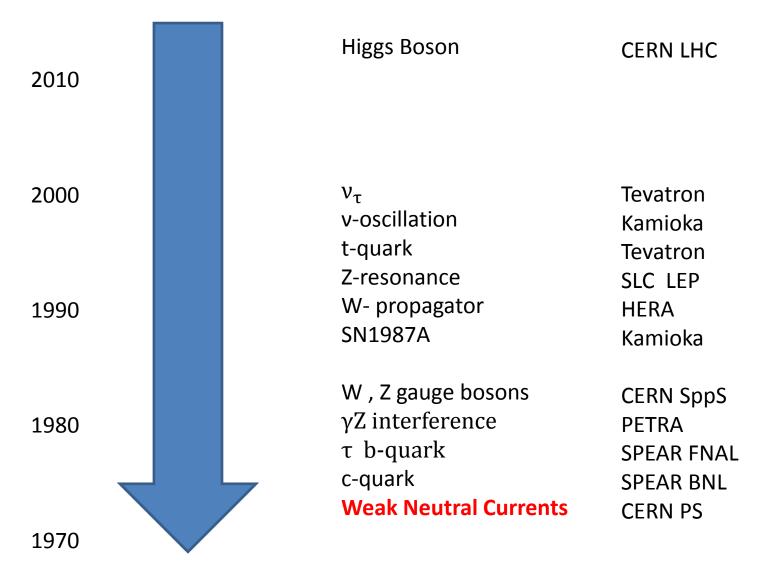
The Discovery of Weak Neutral Currents


Dieter Haidt
Emeritus at DESY, Hamburg
Boston, June 2, 2014

Now and Then

- Table with laptop
- Email, handy, www
- Electronic programming
- Slides with Power point
- Omnipurpose detectors
- Thousands of physicists
- Use facilities (Pythia, PDF...)
- Theory at TeV scale

- Table with pad, pencil and slide rule
- Telephone, Post Office
- Punching cards
- Hand written transparencies
- Specific detectors
- Small collaborations
- Use the data
- Models at GeV scale

Down the electroweak way

Dream: theory for electromagnetic and weak phenomena

QED

- Pure vector
- Parity conserving
- Mediated by photon: neutral, massless and infinite range
- Gauge theory

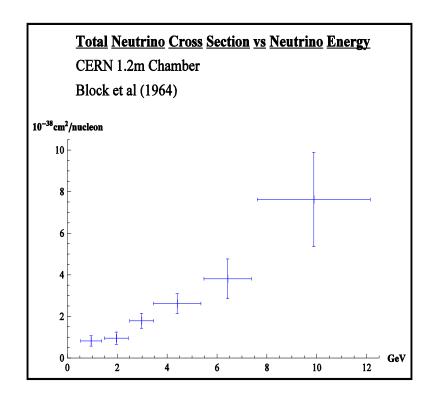
V-A

- Vector and axial vector
- Maximal parity violation
- Intermediate Vector boson?
 charged, massive and
 short range
- Higher orders diverge

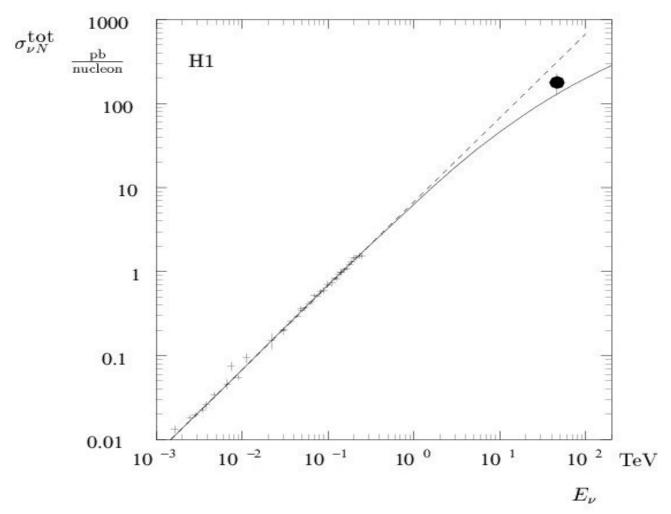
Conclusion: common features and serious differences

The Glashow-Salam-Weinberg Model

- See Steve Weinberg's talk at the CERN Symposium 2003 (cf. EPJC 34 2004)
- Essential ingredients
 - > Extend gauge principle to groups larger than U(1)
 - In addition to charged IVB (W) introduction of a neutral IVB (Z), implying weak neutral currents
 - Spontaneous symmetry breaking
 - GIM mechanism for quark sector (avoid FCNC)
 - > 't Hooft-Veltman : the GSW Model is renormalizable

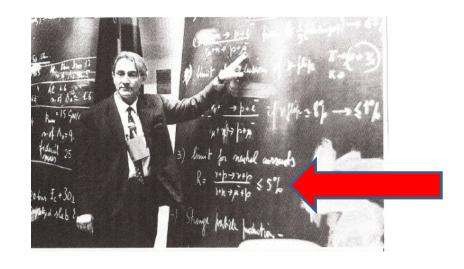

The Accelerator Era

- Absence of $\mu \rightarrow e + \gamma$ 1958 Feinberg : two neutrinos ? W ?
- Pontecorvo and Schwartz propose v-beam realized at CERN and BNL weak interactions in GeV-regime expecting two discoveries
- 1960 T.D.Lee and C.N.Yang set up catalog of 9 important questions including NC


First Results

- 1962 BNL discovers $v_{\mu} \neq v_{e}$
- Siena Conference 1963
 - BC and SC confirm 2v
 - Where is the W? $v N \rightarrow \mu + e + X$ $\sigma \sim E$ (linear!) W-propagator $\longrightarrow M_W$

Neutral currents ?



20 years later

The first NC-searches

- 1. Decays : $\Delta Q = 0$ and $\Delta S \neq 0$ absent
- 2. Ramm Bubble Chamber $v + p \rightarrow v + p$ look for events without muon problem: neutron background small upper limit of 5% (1970 corrected to $(12\pm6)\%$)
- 3. No results from Spark Chamber need trigger without μ

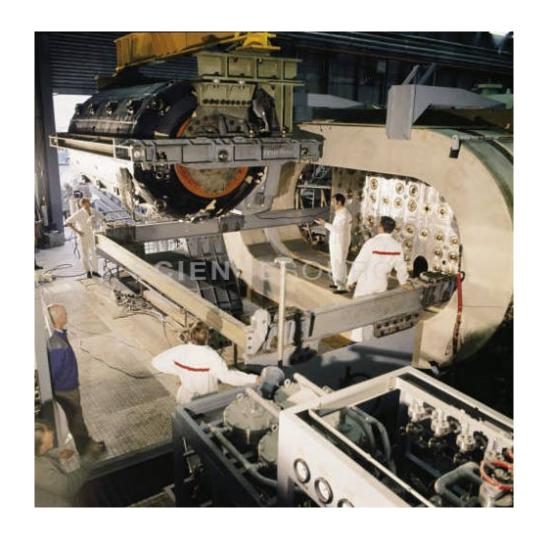
Gilberto Bernardini reports results from Siena 1963

Conclusion: community discouraged

Gargamelle

- 1963 Lagarrigue's vision for next generation bubble chamber
 - Two main requirements :10-times more eventsdetails of final state
 - Solution:
 cylindrical bubble chamber with
 1m diameter and 5m long
 filled with heavy liquid
- 1970 installed in CERN PS v-beamline
- 1971 start running: v and anti-v
- 1978 break down

Lagarrigue the father of Gargamelle


The Physics Program

- 2-day meeting at Milan 1968
- The highlight: SLAC discovered substructure of proton
- Gargamelle looks at partons with W instead of photon
- Search for W remains at highest priority
- Search for NC was not discussed, but included in proposal with low priority
- Proposal submitted 1970

The Gargamelle Collaboration

- 7 european laboratories: Aachen Brussels CERN Ecole Polytechnique Milan Orsay UC London and guests from USA
- Scanning and measuring must be strictly organized in advance
- Scan rules : event classes
 - A. events with muon candidate
 - B. events without muon candidate
 - C. events consisting of protons only
 - D. events with isolated electron, positron or gamma

Installing Gargamelle 1970

CERN and NAL

- Gargamelle
- Approved 1970
- Data taking 1971
- Heavy liquid bubble chamber
- CERN PS Booster 24 GeV
- Wide band v and \overline{v} beams 1-10 GeV
- Record everything

- E-1A HPW
- Approved 1970
- Data taking 1972
- Target calorimeter + muon spectrometer
- NAL PS 400 GeV
- WB beam mixed v and $\bar{\nu}$ 10-200 GeV
- Set trigger to select interesting events

Note: Interest in neutral currents started only in 1972

Status of Theory 1971

Promising renormalizable gauge theory exists

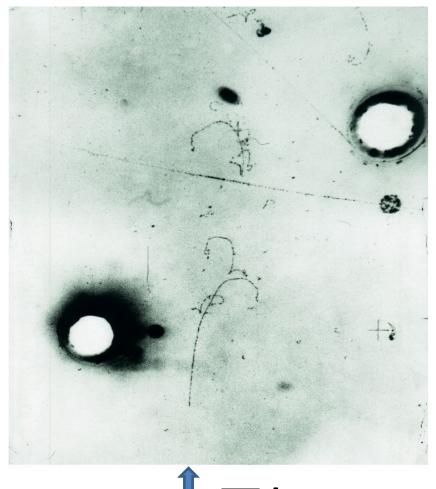
- 1. For $Q^2 \ll {M_W}^2$ reproduce QED and V-A
- 2. Missing experimental evidence in all sectors
 - Fermion sector: no GIM current (c-quark)
 - Gauge sector: no W and Z
 - > Higgs sector: no spin 0 boson
- 3. Predict weak neutral currents ν_{μ} -interactions without final state μ : challenge Gargamelle and HPW (E-1A)

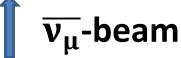
1972: Change Priority

- Theoreticians alert and urge Gargamelle and E-A1 to look for weak neutral currents
- Both collaborations took up immediately the challenge
- Gargamelle was lucky :
 - If NC, then already included in category B setup selection criteria (1 GeV) worry about neutron background
- E-A1 had to setup a new trigger
 worry about lost muons and hadron punch through

The first leptonic NC candidate

Scanned 360000 pictures
Isolated forward *e* observed at
Aachen Dec 1972.

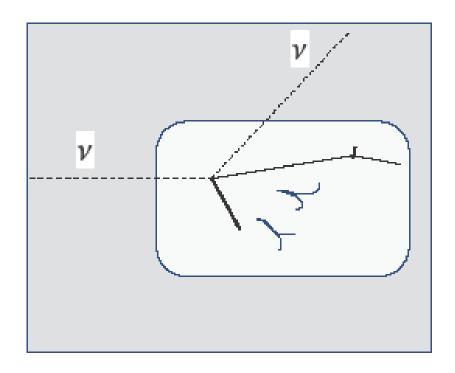

Interpretation:

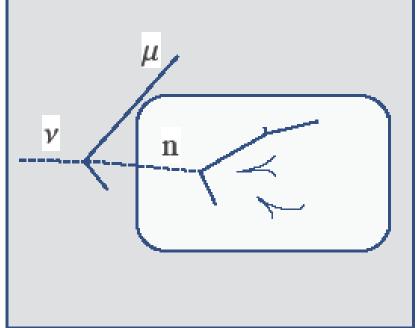

$$\overline{\nu_{\mu}}e \to \overline{\nu_{\mu}}e$$

Properties of electron:

- ➤ **Identification**: unique by bremsstrahlung and curling
- \triangleright Energy 385 \pm 100 MeV
- > Angle 1.4 ± 1.4 degree

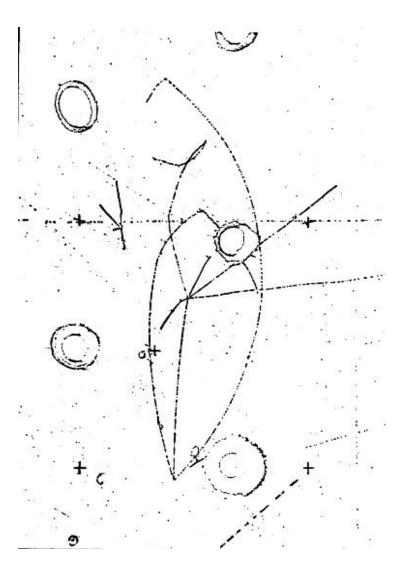
Background: 0.03 ± 0.02 $v_e n \rightarrow e + p (invisible)$





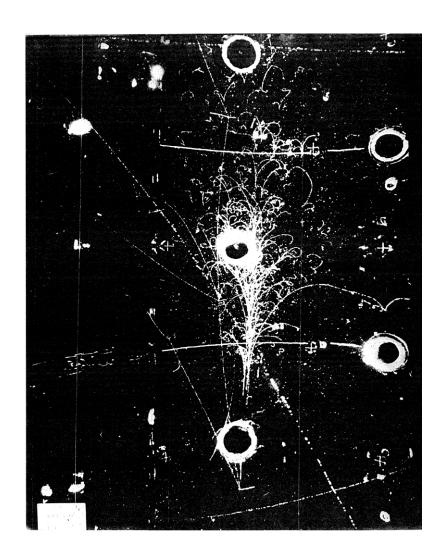
Signal and Background

 $v+N \rightarrow v + hadrons$

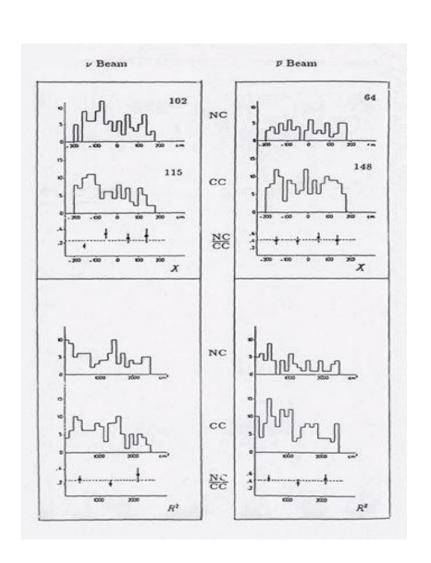

E-1A Experiment

Loose NC if hadron punches through

 $CC \rightarrow NC$ candidate if μ escapes


An early NC candidate

- 3-prong event
- very clean
- no muon
- total visible energy about 6 GeV



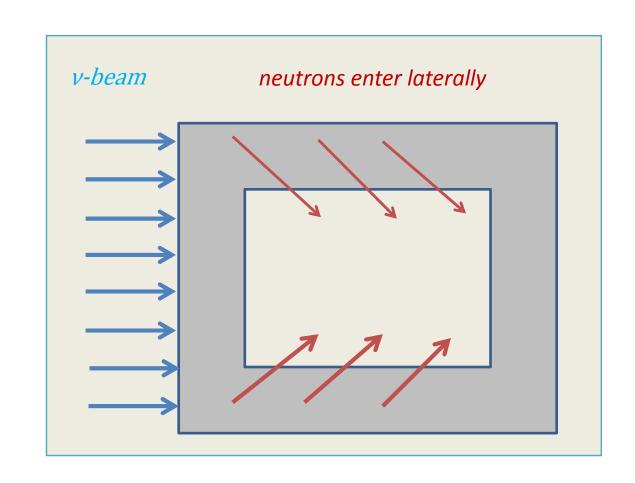
A spectacular NC-candidate

- Event found in Brussels
- All final state particles interact
- High energy neutral
 pion producing a huge
 electromagnetic shower

Status March 1973

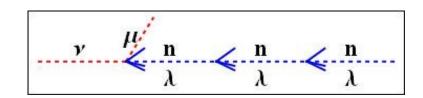
- Compare hadron final state of NC with CC(=v):
 - X=along beam direction R=radial
- NC = v- or n-induced ?
- 3 arguments for v-origin

NC/CC is flat and big


NC look v-like

NC do not look n-like

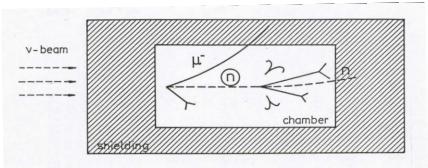
Counter Argument #1

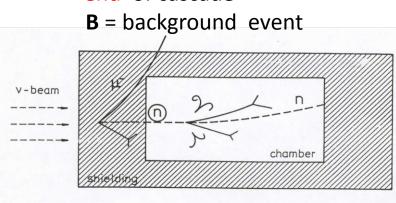

- Broad ν-beam
- Dense matter around chamber (coils)

neutrons enter sideways and generate a flat X-distribution

Counter Argument #2

The neutron cascade:


end of cascade


Jack Fry

Observe in the chamber:

beginning of cascade

AS = associated event

Conclusion: Background proportional to cascade length need quantitative calculation of n-background

Background Calculation

Discovery only if $\#n \ll \#NC$ Need quantitative estimate of n-background Ingredients

Matter distribution
Neutrino flux
Dynamics of final hadron state
Evolution of hadrons in matter

Known Measured From v-events Need cascade model

Breakthrough: cascade only transported by nucleon extract elasticity from pp-data

Predict neutron background : no free parameter

The Proof

D.Haidt

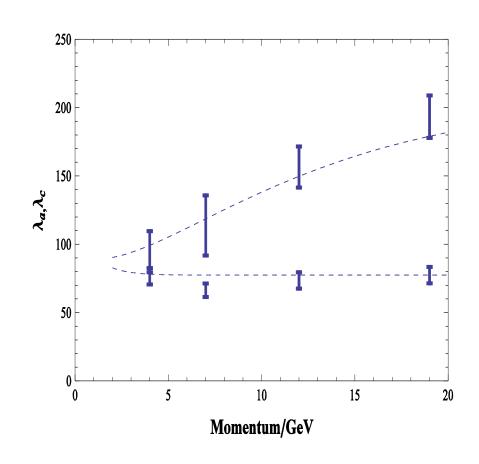
Given: 102 NC candidates in v-film and 15 AS

Worst case: All NC are background

$$\frac{\#B}{\#AS} = \frac{\#NC}{\#AS} = \frac{102}{15}$$

Cascade program predicts:

$$\frac{B}{AS} = 1 \pm 0.3$$

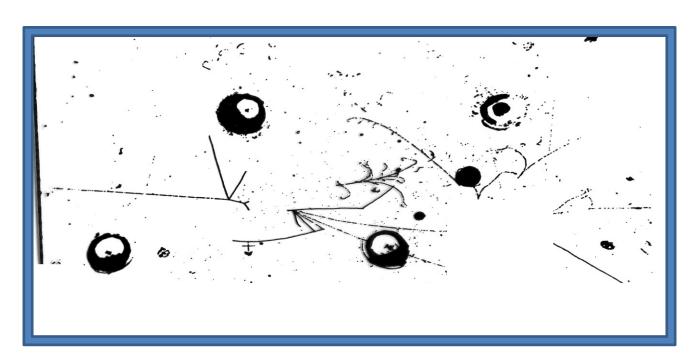

Hypothesis wrong: a new effect exists

The Hot Fall 1973

	Cronology of events		
July	Gargamelle Publication		
End August	Electron Photon Conference at Bonn CN Yang: NC by Gargamelle and HPW The highlight of the conference		
Sep/Oct	HPW modified setup NC effect disappeared Is Gargamelle wrong? Neutron background underestimated?		
Nov/Dec	CERN Directorate inquires Special exposure to Gargamelle Observe p-induced cascade		

Check the Background Calculation

- Special runs in Nov+Dec 1973
- Gargamelle exposed to fast extracted proton pulses of 4, 7, 12 and 19 GeV
- Measure interaction length in chamber
- Measure cascade length



The cascade program is confirmed

A proton cascade in Gargamelle

Proton 7 GeV enters Gargamelle

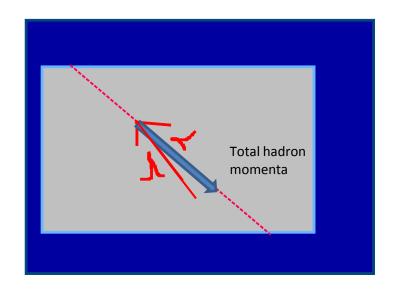
Event: 3241 671 view 2

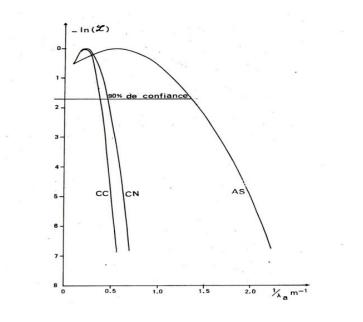
Gargamelle: upgrade

Presented to APS-meeting Washington in April 1974

#events/film	BONN (8/1973)	WASHINGTON (4/1974)
#NC/film v	$\frac{102}{111} = 0.92 \pm 0.13$	$\frac{102}{111} = 0.92 \pm 0.13$
#NC/film ν	$\frac{63}{276} = 0.23 \pm 0.03$	$\frac{70}{298} = 0.23 \pm 0.10$
#AS/film v	$\frac{15}{111} = 0.14 \pm 0.04$	$\frac{40}{277} = 0.14 \pm 0.03$
#AS/film ̄ν	$\frac{12}{276} = 0.04 \pm 0.01$	$\frac{14}{328} = 0.04 \pm 0.01$

Internal Method


A.Pullia


Idea: Interaction lengths of neutrinos and neutrons in chamber liquid are very different

1	_	e^{-}	$-l/_{\lambda}$
1	_	e	$-L/_{\lambda}$

I=flight path L=potential path λ=interaction length

Beam	1/λ for NC	1/λ for CC
V	$0.16 \pm 0.10 \text{ m}^{-1}$	$0.15\pm0.10~\mathrm{m}^{-1}$
$\overline{ u}$	$0.27 \pm 0.13 \text{ m}^{-1}$	$0.10\pm0.10~{\rm m}^{-1}$

Spring 1974: The Happy End

- 1. Gargamelle
 - Double statistics
 - > confirm background calculation
 - > new method
- 2. HPW confirms muonless events
- 3. ANL: 12' BC exclusive n π^+ and p π^0 production
- 4. CITF: narrow band ν and $\overline{\nu}$

new method: event length

The existence of weak neutral currents is finally accepted