MAXIMUM PERMISSIBLE EXPOSURE FOR EXTENDED SOURCES

Wesley Marshall
Laser Safety Specialties

Maximum Permissible Exposure (MPE)

- Laser exposure limits have been established for
- Wavelengths between 180 nm to 1 mm
- Exposure duration between 100 fs and 30,000 s
- CW, pulsed and repetitively pulsed lasers
- Point sources and extended sources
- Separate exposure limits
- Retina, Cornea, Skin
- Due to time constraints, discussion is limited to:
- Visible wavelengths (400 nm to 700 nm) (e.g. 450 nm)
- Single retinal exposure >0.25 s duration (e.g. 10 s)
- Single location of 10 cm from the emitting source

Damage Mechanisms

- MPEs have been established from empirical data
- Two primary damage mechanisms were observed
- Thermal damage
- Irreversible damage due to heating of cells
- Evidence of injury is immediate
- MPE is provided as radiant exposure
- Photochemical damage
- Damage caused by cell interaction with light that is not dependent on temperature rise in the cells
- Evidence of injury is often visible 24 hours later
- MPE is provided as integrated radiance

Retinal Thermal Damage Mechanism

- Point source
- Retinal image of $25 \mu \mathrm{~m}$ (Angular subtense of 1.5 mrad)
- All power entering the eye contributes to the hazard
- A relaxation of the point source MPE can be applied by the use of a correction factor (C_{E}) for extended sources
- Intermediate extended source
- Angular subtense is between 1.5 mrad and 100 mrad
- C_{E} is equal to the ratio of source angle, α, and 1.5 mrad
- Large extended source
- Retinal image is larger than 100 mrad
- Hazard is related to radiance (retinal irradiance)
$-C_{\mathrm{E}}$ is proportional to the square of the source angle

Retinal Photochemical Damage

- Small source
- Retinal image < $187 \mu \mathrm{~m}$ (11 mrad) for $T<100 \mathrm{~s}$
- Definition of "small" increases with exposure duration
- Eye movements blur image so that the averaging cone (γ) increases from 11 mrad to 110 mrad at 10,000 s
- All power entering the eye contributes to the hazard regardless of actual size due to normal eye movements
- Large extended source
- Retinal image is larger than γ (11 mrad for $T<100 \mathrm{~s}$), but only the power within γ contributes to the hazard
- Hazard is related to integrated radiance, which is directly proportional to radiant exposure on the retina

Photochemical MPE

- For all sources, regardless of angular subtense
- Exposure less than 10,000 s

$$
M P E=100 \times C_{B} \mathrm{~J} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{sr}^{-1}
$$

- Exposure greater than 10,000 s

Note that at 10,000 s, the two limits are equal

$$
M P E=0.01 \times C_{B} \mathrm{~W} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{sr}^{-1}
$$

- Averaged over a cone angle equal to gamma (γ)

$$
\gamma=1.1 \times \sqrt{t} \mathrm{mrad} \text { for } 100 \mathrm{~s}<t<10,000 \mathrm{~s}
$$

- Direct comparison between the thermal MPE and the photochemical MPE is hindered because of different units

Photochemical Correction Factor, C_{B}

Small Photochemical Sources

- When $\alpha<\gamma$, the source is a small source
- The solid angle for a small source is averaged over the cone angle γ

$$
\Omega_{\text {small }}=\frac{\pi \gamma^{2}}{4}
$$

- The actual source angle is not used

Photochemical MPE (small source)

- The linear angle of γ is 11 mrad for $T<100 \mathrm{~s}$
- All the power that enters the eye contributes to the hazard for $\alpha<\gamma$
- The solid angle of γ is,

$$
\Omega_{\text {small }}=\frac{\pi \gamma^{2}}{4}=\frac{\pi \times(0.011)^{2}}{4}=9.5 \times 10^{-5} \mathrm{sr}
$$

- This solid angle is rounded to $1 \times 10^{-4} \mathrm{sr}$ (5% error)

Photochemical MPE as Radiant Exposure

- For small sources $(\alpha \leq \gamma)$ and $T<100 \mathrm{~s}$
- The MPE as radiant exposure is computed by multiplying MPE: L_{P} by $\Omega_{\text {small }}$

$$
\text { MPE : } H_{p h}=\text { MPE }: L_{p} \times \Omega_{\text {small }}
$$

$$
M P E: H_{p h}=\left(100 \times C_{B} \mathrm{~J} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{sr}^{-1}\right) \times\left(1 \times 10^{-4} \mathrm{sr}\right)
$$

- The photochemical MPE for small sources is then:

$$
\text { MPE : } H_{\text {phsmall }}=0.01 \times C_{B} \mathrm{~J} \cdot \mathrm{~cm}^{-2}
$$

- For small sources, the photochemical MPE can be compared directly with the thermal MPE

Example 1: MPE (small source)

- Diode laser, 5 mW power at $450 \mathrm{~nm}\left(C_{\mathrm{B}}=1\right)$ 3 mm beam, 3 mrad source at 10 cm from exit
- Calculate MPE for 10 s exposure
- Photochemical
- Small source since 3 mrad < 11 mrad
$M P E: H=0.01 \mathrm{~J} \cdot \mathrm{~cm}^{-2} \quad M P E: E=\frac{M P E: H}{T}$
- MPE $=1.0 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$ (same MPE as thermal point source)
- Thermal
- Intermediate source since 3 mrad is twice 1.5 mrad
$-C_{\mathrm{E}}=2$ and $\mathrm{MPE}=2.0 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$

Large Photochemical Source

- For a large source $(\alpha>\gamma)$, the hazard is based on the angular subtense of the source, α

- Averaging over γ is not necessary for larger sources and γ is not used in the evaluation

$$
\Omega_{\text {source }}=\frac{\pi \alpha^{2}}{4}
$$

Photochemical MPE (large source)

- The same photochemical MPE applies to all sources

$$
M P E: L_{p}=100 \times C_{B} \mathrm{~J} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{sr}^{-1}
$$

- However, for large sources, the solid angle of the source is used to compute the MPE

$$
M P E: H_{\mathrm{ph}(\text { large })}=M P E: L_{p} \times \Omega_{\text {source }}
$$

Example 2: Photochemical MPE (large source)

- Diffuse reflection, 5 mW power at $450 \mathrm{~nm}, 3 \mathrm{~mm}$ beam, 30 mrad source at 10 cm from target
- Calculate MPE for 10 s exposure ($C_{\mathrm{B}}=1$)
- Since $30 \mathrm{mrad}>11 \mathrm{mrad}$

$$
\begin{aligned}
& \Omega_{\text {source }}=\frac{\pi \alpha^{2}}{4}=\frac{\pi \times(0.03)^{2}}{4}=7.07 \times 10^{-4} \mathrm{sr} \\
& M P E: H=100 \mathrm{~J} \cdot \mathrm{~cm}^{-2} \cdot \mathrm{sr}^{-1} \times 7.07 \times 10^{-4} \mathrm{sr}
\end{aligned}
$$

- $\mathrm{MPE}=70.7 \mathrm{~mJ} \cdot \mathrm{~cm}^{-2}$
- $\mathrm{MPE}=7.07 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$ for 10 s

Correction Factor Method

- Proposal is to use a correction factor ($C_{\text {blue }}$) to adjust the small source MPE for large sources
- The ratio between the small source MPE and the large source MPE may be computed

$$
\begin{aligned}
& \text { ratio }=\frac{M P E: H_{\text {ph }} \text { (large) }}{M P E: H_{\text {ph }(\text { small) })}}=\frac{M P E: L_{p} \times \Omega_{\text {souree }}}{M P E: L_{p} \times \Omega_{\text {small }}} \\
& \text { ratio }=\frac{M P E: L_{p} \times\left(\pi \alpha^{2} / 4\right)}{M P E: L_{p} \times\left(\pi \gamma^{2} / 4\right)}=\frac{\alpha^{2}}{\gamma^{2}} \\
& C_{\text {blue }}=\frac{\alpha^{2}}{\gamma^{2}} \text { for } \alpha>\gamma
\end{aligned}
$$

- This factor is in footnote 3 of Table 5e of ANSI Z136.1(2014)

Example 2 Using Correction Factors

- Diffuse reflection, 5 mW power at $450 \mathrm{~nm}, 3 \mathrm{~mm}$ beam, 30 mrad source at 10 cm from target
- $\mathrm{MPE}=1.0 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$ for 10 s for small/point source
$C_{\text {blue }}=\frac{\alpha^{2}}{\gamma^{2}}=\frac{(30 \mathrm{mrad})^{2}}{(11 \mathrm{mrad})^{2}}=7.44$
The thermal and photochemical point source MPEs are the same
$-\mathrm{MPE}=7.44 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$ for 10 s
- This MPE is 5% greater than computed earlier
- Thermal
- Intermediate source since 30 mrad < 100 mrad
- $C_{\mathrm{E}}=30 / 1.5=20$
- MPE $=20 \mathrm{~mW} \cdot \mathrm{~cm}^{-2}$ for 10 s

Thoughts on Using $C_{\text {blue }}$

- For large retinal images, the hazard is related to the retinal irradiance
- Only the portion inside γ contributes to the hazard
- The factor α^{2} / γ^{2} effectively eliminates power outside of γ by increasing the MPE
- An alternate approach would be to eliminate the portion outside of γ from the power measurement by restricting the field of view of the instrument
- This alternate method is used in IEC 60825-1

Elongated Extended Sources

- Elongated sources present unique challenge
- Source consists of α_{x} and α_{y}
- The larger source angle is defined by α_{x}
- Includes both rectangular and elliptical sources
- For thermal evaluation, a correction to the point source MPE may be used
- For photochemical evaluation, the evaluation has been based on radiance using an averaging cone of γ
- By effectively eliminating the power outside of γ, a correction factor method is still possible

Photochemical MPE (narrow elongated source)

- The portion outside of γ does not contribute to the hazard

- The fraction of energy inside the cone is γ / α_{x}
- Increase the MPE by α_{x} / γ for source larger than γ
$M P E: E_{\text {large }}=\left(\frac{\alpha_{x}}{\gamma}\right) \times M P E: E_{\text {small }}$
MPE: $E_{\text {large }}=\left(\frac{\alpha_{x}}{\gamma}\right) \times 1 \times 10^{-4} C_{B} \mathrm{~W} \cdot \mathrm{~cm}^{-2}$

Photochemical MPE (larger rectangular source)

- Both dimensions larger than γ
- Only the portion inside γ contributes to the hazard

- The fraction inside the cone is $\left(\gamma / \alpha_{x}\right) \times\left(\gamma / \alpha_{y}\right)$

$$
M P E: E_{\text {large }}=\left(\frac{\alpha_{x} \times \alpha_{y}}{\gamma^{2}}\right) \times 1 \times 10^{-4} C_{B} \mathrm{~W} \cdot \mathrm{~cm}^{-2}
$$

Conclusion

- Having the thermal MPE and Photochemical MPE in the same units allows easier hazard comparison
- Extended source photochemical correction factors may appear next to those for thermal in the next edition of ANSI Z136.1

$$
C_{\text {blue }}=1.0 \text { for } \alpha<\gamma \quad C_{\text {blue }}=\frac{\alpha^{2}}{\gamma^{2}} \text { for } \alpha>\gamma
$$

- For a rectangular or elliptical source

$$
\begin{aligned}
& C_{\text {blue }}=\frac{\alpha_{x}}{\gamma} \text { for } \alpha_{x}>\gamma \text { and } \alpha_{y}<\gamma \\
& C_{\text {blue }}=\frac{\alpha_{x} \times \alpha_{y}}{\gamma^{2}} \text { for } \alpha_{x}>\gamma \text { and } \alpha_{y}>\gamma
\end{aligned}
$$

