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Tasks for today

• Discuss a recipe for QCD predictions

• Leading Order (LO) Monte Carlo.

• Understand the importance of soft and collinear kinematic limits. 

• ... in both matrix elements and phase space.

• Understand how properties of these limits can be used to 
extend LO predictions.

• evolution equations and parton showers.

2



Quantum Chromodynamics - John Campbell -

Recipe for QCD cross sections

1.Identify the final state of interest, e.g. leptons, photons, quarks, gluons.

2.Draw the relevant Feynman diagrams and begin calculating.

• take care of QCD color factors using color algebra.

• compute the rest of the diagram using spinors, Gamma matrices, etc.

3.This gives us the squared matrix elements.

4.To turn this into a cross section, we need to integrate over momentum degrees 
of freedom → phase space integration.

• for final state momenta, this is just like QED. 

• in the initial state, we have the additional complication that we are colliding 
protons and not quarks/gluons (more on this later).

• this step almost always performed numerically - “Monte Carlo integration”.
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Identifying the final state
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• From the beginning, we noted that all particles observed in experiments 
should be color neutral → no quarks or gluons.

• How then can we mesh experimental observations with the QCD Lagrangian, 
which necessarily involves the fundamental quark and gluon fields?

• A scattering can be described in terms of energetic quarks and gluons 
(partons) that subsequently hadronize, combining into color-neutral mesons 
and baryons, without too much loss of energy.

• This concept is often referred to as local parton-hadron duality.

• This naturally accommodates the replacement of jets of particles in the final 
state by an equivalent number of quarks or gluons.
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Leading order tools
• The leading order estimate of the cross section is obtained by computing all 

relevant tree-level Feynman diagrams (i.e. no internal loops).

• Nowadays this is practically a solved problem - many suitable tools available.
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ALPGEN
M. L. Mangano et al.

http://alpgen.web.cern.ch/alpgen/

AMEGIC++
F. Krauss et al.

http://projects.hepforge.org/sherpa/dokuwiki/doku.php

CompHEP
E. Boos et al.

http://comphep.sinp.msu.ru/

HELAC
C. Papadopoulos, M. Worek

http://helac-phegas.web.cern.ch/helac-phegas/helac-phegas.html

Madevent
F. Maltoni, T. Stelzer

http://madgraph.roma2.infn.it/

http://alpgen.web.cern.ch/alpgen/
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Madgraph

6

http://madgraph.roma2.infn.it/
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Limiting factors

• Solved problem in principle, but computing power is still an issue.

• This is mostly because the number of Feynman diagrams entering the 
amplitude calculation grows factorially with the number of external particles.

• hence smart (recursive) methods
to generate matrix elements.

• Demonstrated by the time taken
to generate 10,000 events
involving  2 gluons in the initial
state and up to 10 in the final state.

• The lower curve shows a
smarter treatment of color
factors, which become a limiting
factor too.

• active research area.
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Beyond fixed order

• Ten gluons in the final state is a lot - but doesn’t come close to the typical 
particle multiplicity in a usual event.

• Moreover, we want a tool that says something about hadrons, not partons.

• How can we hope to build something like this from scratch, using QCD?

• Answer: yes! - due to a particular universal behaviour of QCD cross sections.

• To demonstrate this, we start
with a short detour into some
Higgs physics.

• Shown here are cross sections
for different Higgs production
modes at the (14 TeV) LHC.

• Here we are interested in the
mode with the largest cross
section: gluon fusion.
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Higgs coupling to gluons

• How does this coupling take place?
Certainly not directly!

• The answer is through a loop, with the
Higgs coupling preferentially to the
heaviest quark available: the top quark.

• In general, loop-induced processes are suppressed compared to tree-level 
contributions - but at the LHC, gluons will be plentiful (esp. compared to 
antiquarks - more on that later).

• We’re not going to perform this computation here, but note that in the limit that 
the top mass is infinite the result is formally equivalent to the coupling obtained 
by adding a term to the Lagrangian:
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Higgstop 
quark

LggH =
C

2
H FA

µνFµν
A

C =
αs

6πv
Higgs 
field

same field 
strength as before

“Effective Theory” 
gives rise to ggH 
coupling and new 
Feynman rules.



A,α

B,β

C, γ

(all momenta
incoming)

−iCg2
sfABXfXCD

[
gαγgβδ − gαδgγβ

]

−iCg2
sfBCXfXAD

[
gβαgγδ − gβδgαγ

]

−iCg2
sfBCXfXAD

[
gγβgαδ − gγδgβα

]

iCδAB
(
p · q gαβ − pβqα

)

−Cgsf
ABC

[
gαβ(pγ − qγ)

+gβγ(qα − rα)

+gγα(rβ − pβ)
]
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Feynman rules: effective theory

• Also get 3- and 4-point vertices that mimic the structure of the pure QCD case.
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Effective theory

• This effective theory is a good approximation.

• Moreover it is very useful for more complicated calculations

• chain new vertices together in order to compute cross sections that would 
be intractable in the full (finite top mass) theory.

• e.g. producing additional quarks or gluons (i.e. jets).
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of the threshold region 
around 2mtfull theory
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corrections < 20%
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Matrix elements

• First look at the squared matrix elements for this process.

• Now consider adding a gluon (total of 4 diagrams - remember triple-gluon+H).

• Inspect this in the limit that gluons 2 and 3 are collinear:
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H

p1

p2

H

p1

|MHggg|2 = 4Nc(N2
c − 1)C2g2

s ×(
m8

H + (2p1.p2)4 + (2p1.p3)4 + (2p2.p3)4

8p1.p2 p1.p3 p2.p3

)

|MHgg|2 = 2(N2
c − 1)C2m4

H

p2 p3

p2 = zP , p3 = (1− z)P
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Collinear limit: gluons

• Under this transformation we can make the replacements:

and simply read off the answer:

• This clearly shares some features with the ggH matrix element squared we 
just calculated, which we can exploit to write it in a new way.

where the collinear splitting function, which only depends on the relative 
weight in the splitting (z), is defined by:
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2p1.p2 → zm2
H , 2p1.p3 → (1− z)m2

H , 2p2.p3 → 0 ,

|MHggg|2
coll.−→ 4Nc(N2

c − 1)C2g2
sm4

H

(
1 + z4 + (1− z)4

2z(1− z)p2.p3

)

|MHggg|2
coll.−→ 2g2

s

2p2.p3
|MHgg|2Pgg(z)

Pgg(z) = 2Nc

(
z2 + (1− z)2 + z2(1− z)2

z(1− z)

)
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Collinear limit: quarks

• Same trick with the two collinear gluons replaced by quark-antiquark pair.

• We find a similar result. In the collinear limit, the matrix element squared is 
again proportional to the matrix element with one less parton:

The splitting function this time is given by:
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p1

p2 p3

H
|MHgq̄q|2 = 4TR(N2

c − 1)C2g2
s

×
(

(2p1.p2)2 + (2p1.p3)2

2p2.p3

)

|MHgq̄q|2
coll.−→ 2g2

s

2p2.p3
|MHgg|2Pqg(z)

Pqg(z) = TR

(
z2 + (1− z)2

)
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Collinear limit: quark-gluon

• To investigate this last case, we need slightly less exotic matrix elements.

• A similar analysis, with the gluon carrying momentum fraction (1-z), leads to 
the result:
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p1
p1

p2 p2

p3QQ

virtual photon
 (Q2>0)

|Mγ∗q̄q|2 = 4Nce
2
qQ

2 |Mγ∗q̄qg|2 = 8NcCF e2
qg

2
s ×(

(2p1.p3)2 + (2p2.p3)2 + 2Q2(2p1.p2)
4 p1.p3 p2.p3

)

Pqq(z) = CF

(
1 + z2
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Universal factorization

• The important feature of these results is that they are universal, i.e. they apply 
to the appropriate collinear limits in all processes involving QCD radiation.

• They are a feature of the QCD interactions themselves.
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|Mb...|2Pab(z)
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Infrared singularities

• These are called infrared singularities, which occur when relevant momenta 
become small.

• they are thus indicative of long-range phenomena which are, by definition, 
not well described by perturbation theory.

• at such scales are approached, hadronization takes over and apparent 
singularities are avoided.

• In perturbative QCD we must avoid such issues by restricting our attention to 
infrared safe quantities that are insensitive to such regions.

• for example: in our leading order calculations, we try to describe jets with 
large transverse momenta, not arbitrarily soft particles.

• we shall see later on that it is sometimes useful to regularize such 
singularities: they can appear in intermediate steps of a calculation, but 
must disappear at the end (for physical observables).

• this is a statement of the Kinoshita-Lee-Nauenberg (KLN) theorem.
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The silver lining

• On the positive side:

• we have learned that emission of soft and collinear partons is favoured;

• we know exactly the form of the required matrix elements when that occurs.

• In fact it’s even better than this - it applies to the phase space too.

• Start from the standard phase space formula:

and note that, if we fix the momentum of a, we can relate these by:
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dPS(...)b = (. . .)
d3!pb

(2π)32Eb

dPS(...)ac = (. . .)
d3!pa

(2π)32Ea

d3!pc

(2π)32Ec

dPS(...)ac = dPS(...)b
d3!pa

(2π)32Ea

Eb

Ec

a

c

b

(for θa ~ 0)

≈ dPS(...)b
1

(2π)2
EaEb

2Ec
dEa θadθa

θc

θa



dσ(...)ac = |M(...)ac|2dPS(...)ac = dσ(...)b

(αs

2π

) dt

t
Pab(z) dz
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Small angle approximation
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a

c

b
θc

θa
zθa − (1− z)θc = 0 =⇒ θa = (1− z)(θa + θc)

t = (pa + pc)2 = 2EaEc(1− cos(θa + θc)) = E2
b z(1− z)(θa + θc)2 =

zE2
b θ2

a

1− z

dPS(...)ac = dPS(...)b
1

(2π)2
EaEb

2Ec

(1− z)Eb

2zE2
b

dz dt = dPS(...)ac
dz dt

16π2

pa = zpb , pc = (1− z)pb

=⇒ Ea = zEb , Ec = (1− z)Eb

• “Small angle” kinematics of the collinear limit:

• Introduce new variable t to describe virtuality of b, related to opening angle:

• Hence we can write the factorized form in this limit as,

• Combining this with our previous matrix element factorization formula gives:



• This is an important equation: it tells us how we can generate additional soft 
and collinear radiation ad infinitum.

• Technically this is called timelike branching since we have implicitly assumed 
that all particles are outgoing (t>0).

• extension to the spacelike case (radiation on an incoming line) is similar.

• This is the principle upon which all parton shower simulations are based.

∫
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Parton showers
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dσn+1 = dσn

(αs

2π

) dt

t
Pab(z) dz

∫
∫ ∫
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Popular parton shower programs
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HERWIG
G. Corcella et al.

http://hepwww.rl.ac.uk/theory/seymour/herwig/

HERWIG++
S. Gieseke et al.

http://projects.hepforge.org/herwig/

SHERPA
F. Krauss et al.

http://projects.hepforge.org/sherpa/dokuwiki/doku.php

ISAJET
H. Baer et al.

http://www.nhn.ou.edu/~isajet/

PYTHIA
T. Sjöstrand et al.

http://home.thep.lu.se/~torbjorn/Pythia.html

http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/
http://alpgen.web.cern.ch/alpgen/


y < x

z =
y

x

δf−(x, t) =
δt

t
f(x, t)

∫ x

0
dy dz

(αs

2π

)
Pgg(z)δ(y − zx)

=
δt

t
f(x, t)

∫ 1

0
dz

(αs

2π

)
Pgg(z)
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Inside a parton shower
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x+ve effect from 
higher momenta 

splitting

δf+(x, t) =
δt

t

∫ 1

x
dy dz

(αs

2π

)
Pgg(z)f(y, t)δ(x− zy)y > x

z =
x

y
=

δt

t

∫ 1

x

dz

z

(αs

2π

)
Pgg(z)f(x/z, t)

x

-ve effect from 
splitting into 

smaller momenta

• The defining equation can be interpreted in terms of the probability of having a 
parton branching with given (x,t) at some point in the shower: let’s call it f(x,t).

• For simplicity, let’s assume that the evolution doesn’t change the parton 
species, e.g. an all-gluon shower (extension is straightforward).

• Now consider a small change from t to t+δt and its effect on f(x,t).
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The DGLAP equation

• By taking the difference can reinterpret this as a differential equation for f(x,t):

• This is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation.

• It is most convenient to expose a solution to this equation by introducing a 
Sudakov form factor, Δ(t).

• Hence we can rewrite as:
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t
∂f(x, t)

∂t
=

∫ 1

0
dz

(αs

2π

)
Pab(z)

(
1
z
f(x/z, t)− f(x, t)

)

∆(t) = exp
[
−

∫ t

t0

dt′

t′

∫
dz

(αs

2π

)
Pab(z)

]

t
∂f(x, t)

∂t
=

∫
dz

z

(αs

2π

)
Pab(z)f(x/z, t) +

f(x, t)
∆(t)

t ∂∆(t)
∂t

=⇒ t
∂

∂t

(
f(x, t)
∆(t)

)
=

1
∆(t)

∫
dz

z

(αs

2π

)
Pab(z)f(x/z, t)
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The Sudakov form factor

• Integrate up to find solution given boundary condition at t=t0:

• Interpret Sudakov form factor as the probability for no parton emission

• better: no resolvable parton emission. We must cut off the z-integration as
z→1 to avoid the singularities we found before. Above cutoff unresolvable.

• The Sudakov interpretation lends itself to Monte Carlo methods
(universally used in parton showers):

• pick a random number r in [0,1] and determinate t2 from t1 from  

• can generate z according to integral over correct Pab for splitting.
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f(x, t) = ∆(t)f(x, t0) +
∫ t

t0

dt′

t′
∆(t)
∆(t′)

∫
dz

z

(αs

2π

)
Pab(z)f(x/z, t)

no branching 
between t0 and t

integrate over multiple branchings; for each 
value of tʹ, no branching between tʹ and t

∆(t2)
∆(t1)

= r



Quantum Chromodynamics - John Campbell -

Ending the shower

• Eventually the evolution will bring us to a very small scale of t at which we no 
longer believe in the perturbation theory (say ~ 1 GeV). Beyond that point we 
no longer perform any branching.

• All partons produced in this shower are showered further, until same condition.
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• Once this point is reached, no 
more perturbative evolution 
possible.

• Partons should be interpreted 
as hadrons according to a 
hadronization model.

• examples: string model,
cluster model.

H
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D
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IZ
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T
IO

N

partonic 
matrix element

parton 
shower

• Most importantly: these are all phenomenological models.

• They require inputs that cannot be predicted from the QCD Lagrangian ab 
initio and must therefore be tuned by comparison with data (mostly LEP).
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What did we win?

• A parton shower allows us to (attempt to) describe features of the whole event: 
the output is high multiplicity final states containing hadrons.

• Very flexible framework. In principle, start with any hard scattering (e.g. any 
theorist’s latest and greatest model) and the PS takes care of QCD radiation.
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PYTHIA
CDF DATA

Z boson transverse momentum

• In contrast to a pure leading 
order prediction, a parton 
shower can be matched to 
data even at low pT.

• This is true in general: 
broader region of applicability.

Z

g
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Warnings

• By construction, a parton shower is correct only for successive branchings that 
are collinear or soft (formally called leading log).

• Should therefore take care
when describing final states
in which there is either
manifestly multiple hard
radiation, or its effects might
be important. 

• example: simulation of
background to a SUSY
search in the ATLAS TDR. 

• Also: full higher-order corrections are not included (more on this later).

• Uncertainty can only be estimated by comparison with data and/or between 
different parton shower implementations.

• the gory details of each shower are often quite different.
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Recap

• There are many tools capable of producing leading order cross section 
predictions from scratch.

• They are limited only by computer power: as a result, cannot generate more 
than 10 particles in the final state (program/process specific).

• The factorization of both QCD matrix elements and phase space, in the soft 
and collinear limits, allows us to generate arbitrarily many such branchings.

• factorization of matrix elements: universal Altarelli-Parisi splitting functions

• factorization of phase space: small angle approximation.

• Such a formalism leads to a DGLAP evolution equation for the probability of 
finding a given parton within the branching process.

• Introducing a Sudakov form factor leads to an interpretation which is easy to 
implement as a parton shower (e.g. Pythia, Herwig, Sherpa).

• can describe exclusive final states (hadrons), even down to small scales;

• in regions of hard radiation the soft/collinear approx. may not be sufficient.
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