Electroweak Symmetry Breaking and New Dynamics at the TeV Scale

Gustavo Burdman

Fermilab/University of São Paulo

FNAL Users' Meeting, June 3-4 2009

Outline

- 1 The Standard Model: Good, Bad, Ugly
 - The Standard Model
 - Electroweak Symmetry Breaking
 - The Hierarchy Problem
- New Dynamics and the TeV Scale
 - QCD-like Strong Dynamics
 - Out-of-this-world Strong Dynamics
- Summary/Outlook

The Standard Model: a Gauge Theory

Interactions among known elementary particles described by

$$SU(3)_c \times SU(2)_L \times U(1)_Y$$

The Strong Interactions

Described at high energies by $SU(3)_c$

The Electroweak Sector

Electroweak interactions described by $SU(2)_L \times U(1)_Y$

Gauge Interactions

Spontaneously Broken Electroweak Sector

But the electroweak gauge theory actually is spontaneously broken:

$$SU(2)_L \times U(1)_Y \longrightarrow U(1)_{\rm EM}$$

- M_W , M_Z , $\sin^2 \theta_W$
- Observations consistent with this pattern of symmetry breaking

Spontaneously Broken Electroweak Sector

But the electroweak gauge theory actually is spontaneously broken:

$$SU(2)_L \times U(1)_Y \longrightarrow U(1)_{\rm EM}$$

- M_W , M_Z , $\sin^2 \theta_W$
- Observations consistent with this pattern of symmetry breaking
- Central question: What is the origin of this spontaneous breaking?

Spontaneously Broken Electroweak Sector

But the electroweak gauge theory actually is spontaneously broken:

$$SU(2)_L \times U(1)_Y \longrightarrow U(1)_{\rm EM}$$

- M_W , M_Z , $\sin^2 \theta_W$
- Observations consistent with this pattern of symmetry breaking
- Central question: What is the origin of this spontaneous breaking?
- Other questions: Fermion mass hierarchy, Dark Matter, Baryogenesis, · · ·

Electroweak Symmetry Breaking and the Standard Model

Implementation of the Higgs Mechanism:

• Introduce $H = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$, the Higgs doublet:

$$\mathcal{L} = (D_{\mu}H)^{\dagger} (D^{\mu}H) - V(H)$$
 $SU(2)_L \times U(1)_Y$ invariant

- Interactions with gauge bosons in $\underline{D_{\mu}}=\partial_{\mu}-gec{W}_{\mu}-g'B_{\mu}$
- $V(H) \Rightarrow$ vacuum not invariant: $\langle H \rangle = \begin{pmatrix} 0 \\ v \end{pmatrix}$ \Rightarrow masses for 3 out of the 4 gauge bosons.

Spontaneous Symmetry Breaking

<u>Superconductor</u>: Electromagnetic gauge invariance is spontaneously broken. Material obeys

$$\mathcal{E}_{\mathrm{normal}} = \mathcal{E}_{\mathrm{SC}} + \Delta$$

Superconducting vacuum breaks $U(1)_{\rm EM} \Rightarrow$ Goldstone boson ϕ such that

$$A_{\mu} = \partial_{\mu} \phi$$
 minimizes energy.

- Magnetic Field vanishes inside → flux exclusion (Meissner effect.)
- EM interactions become short range ⇒ "Massive" Photon

⇒ Higgs mechanism

SSB in a Superconductor

• Effective Description: Superconductivity described by order parameter φ and the Landau-Ginzburg theory

$$V(\phi) = -\mu^2 |\phi|^2 + \lambda \left(|\phi|^2 \right)^2$$

Microscopic Description: BCS theory

$$\langle e^-e^-\rangle \neq 0$$

 $V(\phi)$ only an effective description of underlying dynamics

Spontaneous Chiral Symmetry Breaking in QCD

At low energies,
$$\Lambda \sim \Lambda_{\rm QCD}$$

$$\langle \bar{Q}_L Q_R \rangle \neq 0$$

$$\Rightarrow SU(3)_L \times SU(3)_R \longrightarrow SU(3)_V$$

Below Λ : π 's, K's, η 's and baryons.

<u>Above Λ </u>: quarks and gluons. QCD UV completion of strong interactions.

What is the underlying dynamics of EWSB?

Examples suggest new dynamics underlying Higgs mechanism of EWSB

The Hierarchy Problem

But if Higgs elementary scalar quantum corrections drive m_h up

- We need $\Rightarrow m_h \lesssim 1 \text{ TeV}$
- But if $\Lambda \to M_P \sim 10^{19}$ GeV, unnatural

⇒ Gauge Hierarchy Problem

Solving the Hierarchy Problem and EWSB

Need new physics at $\Lambda \sim 1 \text{ TeV}$

New Dynamics

New Dynamics generate Hierarchy and break Electroweak Symmetry

- Technicolor, Topcolor, Top see-saw, · · ·
- Most compact extra-dimensional theories: mostly warped extra dimensions, LED

New Symmetries

Symmetries cancel quadratic divergencies, defer need for new dynamics. Electroweak symmetry broken radiatively.

- SUSY (e.g. dynamics to generate μ term)
- Little Higgs, Twin Higgs, · · ·

New Dynamics at the TeV Scale

New Dynamics at the TeV Scale

Strong Dynamics at the TeV Scale

Analogy with QCD:

- New Strong Interaction: Technicolor
- Strong at $M_W \ll M_P$
- Breaks Electroweak symmetry: $\langle \bar{F}_L F_R \rangle \neq 0$

Higgs Mechanism:

$$(\tilde{\pi}^{\pm}, \tilde{\pi}^{0}) \Rightarrow (W_{L}^{\pm}, Z_{L})$$

 $\Rightarrow M_{W}, M_{Z}$

Problems with Technicolor

Electroweak Precision Bounds

S parameter constraints:

 $S_{\rm TC} \sim N$

But Minimal TC models OK

Fermion Masses

Need Extended Technicolor

- Fermion mass hierarchy ⇒ need many ETC scales
- Heavier masses (m_c, m_τ) require "walking".
- ETC cannot get m_t
 - ⇒ Fermion mass hierarchy main problem for Technicolor

Modeling the New Dynamics of the TeV Scale

New tools for modeling strongly coupled theories:

Theories with Compact Extra Dimensions ← Strongly Coupled 4D Theories

KK Modes ↔ Radial Excitations

 $M_{KK} \sim \Delta \leftrightarrow \text{Scale of Strong Interaction}$

△ related to size of extra dimension

Strong Dynamics from Extra Dimensions

When is it useful?

For instance: in QCD with large N_c , hadrons couple weakly \Rightarrow If strong dynamics is "large N", extra-dimensional theory is weakly coupled

Strong Dynamics from One Curved Extra Dimension

Solving the Hierarchy Problem with one curved extra dimension:

Metric in extra dimension \Rightarrow small energy scale from M_P (Randall-Sundrum)

Corrections to m_h OK If Higgs close to TeV brane

Need Higgs IR localization

Dynamical Origin of the Higgs Sector

Different 4D Strong Dynamics depends on what localizes the Higgs to/near the IR/TeV brane

- Gauge-Higgs Unification ← Composite Higgs (Agashe, Contino, Pomarol)
 - Extract H from a 5D gauge field: $A_M^a o (A_u^a, A_5^a)$
 - m_h protected by 5D gauge symmetry (or H is a pseudo NGB)
- Zero-mode Fermion Condensation ←→ Strongly Coupled 4th Generation (g.B., Da Rold)
 - 4th Generation localized near IR ⇒ strongly coupled to KK gauge bosons
 - E.g. $\langle \overline{U}_4 U_4 \rangle \neq 0 \Rightarrow \text{EWSB}$
- Higgsless (EWSB by boundary conditions) ←→ Walking Technicolor (Csaki, Grojean, Pilo, Terning)

Origin of Fermion Mass Hierarchy

O(1) flavor breaking in 5D bulk can generate fermion mass hierarchy:

TeV localization \rightarrow larger Yukawas, Planck localization \rightarrow suppressed Yukawas.

These Strongly Coupled Theories include a working model of fermions masses and mixings

Signals at the LHC

These theories are characterized by:

- S-channel resonances: KK Gauge Bosons / Vector Mesons
- Flavor violation: resonances couple stronger to heavier fermions
 - $V_{KK} \rightarrow \overline{t}t$
 - $V_{KK} \rightarrow \overline{t}j$
 - Flavor physics: Lepton flavor violation, Rare B decays, Charm mixing/CPV

Other model-dependent signals:

- Light Higgs vs. Heavy Higgs (or no Higgs)
- Heavy Fourth Generation vs. Light KK Fermions
- Gauge symmetries ⇒ Spectrum of resonances

Signals at the LHC

These theories are characterized by:

- S-channel resonances: KK Gauge Bosons / Vector Mesons
- Flavor violation: resonances couple stronger to heavier fermions
 - $V_{KK} \rightarrow \overline{t}t$
 - $V_{KK} \rightarrow \bar{t}j$
 - Flavor physics: Lepton flavor violation, Rare B decays, Charm mixing/CPV

Other model-dependent signals:

- Light Higgs vs. Heavy Higgs (or no Higgs)
- Heavy Fourth Generation vs. Light KK Fermions
- Gauge symmetries ⇒ Spectrum of resonances

Map as many strongly coupled theories as possible Better chance to reconstruct dynamics from signals

Signals at the Tevatron ?!

Has the Tevatron seen strongly coupled new fermions?

(Dobrescu, Kong, Mahbubani '09; G.B. Da Rold, Matheus, in progress)

Consistent with $M_{KK} \simeq 1 \text{ TeV}$

Summary/Outlook

- The TeV scale could be a window to new strong dynamics
- Weakly coupled theories in curved 5D map to Strongly Coupled 4D Dynamics
- Viable Models of EWSB and Flavor
- ullet Resonant spectrum \simeq few TeV
- Couplings of KK gauge bosons to fermions reveal flavor theory
- Models and Signals defined by mechanism of Higgs localization, flavor
- If LHC reveals Strongly Coupled TeV scale
 ⇒ Model Building in 5D could be a useful tool
- Other useful tools:
 - Lattice simulations
 - Deconstruction of extra-dimensional theories

