

Numerical Simulations Of Beam Transverse Diffusion

V. Previtalí D. Shatílov, G. Stancari, A. Valishev

Experimental Measurements

- Assuming that the diffusion equation regulates the time evolution of the particle amplitudes, it is possible to correlate the beam losses produced by a small collimator movement with the local diffusion coefficient.
- "Baby step" collimator measurements on the antiproton halo for different collimator positions, with and without BB, with and without Electron Lens
- analysis done by G. Stancari

Example

The diffusion coefficient has been calculated for different collimator positions.

Experimental Measurements

- Assuming that the diffusion equation regulates the time evolution of the particle amplitudes, it is possible to correlate the beam losses produced by a small collimator movement with the local diffusion coefficient.
- "Baby step" collimator measurements on the antiproton halo for different collimator positions, with and without BB, with and without Electron Lens
- analysis done by G. Stancari
\Rightarrow my task: reproduce the diffusion coefficient with lifetrack

Some Background: The Diffusion Model

$$
\begin{aligned}
& \text { density function } \\
& \frac{\delta(\mathscr{P}}{\delta t}=-\nabla(\varnothing)^{\text {fux }} \\
& \theta)=-D \nabla \rho \\
& \text { diffusion coefficient } \\
& \downarrow \\
& \text { Continuity equation } \\
& \text { Flick's law* } \\
& \text { *valid only for a } \\
& \text { brownian motion } \\
& \frac{\delta \rho}{\delta t}=\nabla(D \cdot \nabla \rho) \quad \text { Diffusion equation }
\end{aligned}
$$

$$
\begin{gathered}
\text { Diffusion equation } \\
\frac{\delta \rho}{\delta t}=\nabla(D \cdot \nabla \rho)
\end{gathered} \begin{gathered}
\rho=\rho(?) \\
D=D(?)
\end{gathered}
$$

$$
\begin{array}{c|c}
\text { Diffusion equation } & \begin{array}{c}
\rho=\rho(?) \\
\frac{\delta \rho}{\delta t}=\nabla(D \cdot \nabla \rho)
\end{array} \quad \begin{array}{c}
\\
D=D(?)
\end{array}
\end{array}
$$

Syphers

1 - only one dimension
2- assume D is scalar value
3 - consider the density function in x, xp
4- transform in cylindrical coordinates
Seidel/Stancari
(only cylindrical symmetric distributions in x, xp)
5- Consider the invariant $\quad W=\left[x^{2}+x p^{2}\right] / \beta$
$\frac{\delta \rho}{\delta t}=\frac{4 D}{\beta} \frac{\delta}{\delta W}\left(W \frac{\delta \rho}{\delta W}\right)$
1- only one dimension 2-Consider the invariant $J=x_{\max }^{2} /(4 \beta)$

3 - consider the density function in J

$$
\frac{\delta \rho}{\delta t}=\frac{\delta}{\delta J}\left(D(J) \frac{\delta \rho}{\delta J}\right)
$$

Some (useful) Notation

	coordinates		invariant
physical	$\begin{aligned} & x=n \sqrt{\epsilon \beta} \cdot \cos \phi \\ & x^{\prime}=n \sqrt{\epsilon \beta} \cdot(\cos \phi-\alpha \sin \phi) \end{aligned}$		
Floquet	$\begin{aligned} & \xi=x / \sqrt{\epsilon \beta} \\ & \xi^{\prime}=\left(\alpha x+\beta x^{\prime}\right) / \sqrt{\epsilon \beta} \end{aligned}$	$R=\sqrt{\xi^{2}+\xi^{\prime 2}}$	R^{2}
Sypher	$\begin{aligned} & x=n \sqrt{\epsilon \beta} \cdot \cos \phi \\ & x p=\left(\alpha x+\beta x^{\prime}\right) \end{aligned}$	$\begin{aligned} r & =\sqrt{x^{2}+x p^{2}}= \\ & =R \sqrt{\epsilon \beta} \end{aligned}$	$\begin{aligned} W & =r^{2} / \beta \\ & =R^{2} \varepsilon \end{aligned}$
Seidel/ Stancari	$x=n \sqrt{\epsilon \beta} \cdot \cos \phi$		$J=x_{\text {max }}^{2} /(4 \beta)$

Some (useful) Notation

coordinates

$$
\begin{aligned}
& x=n \sqrt{\epsilon \beta} \cdot \cos \phi \\
& x^{\prime}=n \sqrt{\epsilon \beta} \cdot(\cos \phi-\alpha \sin \phi)
\end{aligned}
$$

physical

$$
\begin{aligned}
& \xi=x / \sqrt{\epsilon \beta} \\
& \xi^{\prime}=\left(\alpha x+\beta x^{\prime}\right) / \sqrt{\epsilon \beta}
\end{aligned}
$$

Floquet

$$
x=n \sqrt{\epsilon \beta} \cdot \cos \phi
$$

$$
x p=\left(\alpha x+\beta x^{\prime}\right)
$$

Seidel/
Stancari

$$
x=n \sqrt{\epsilon \beta} \cdot \cos \phi
$$

$$
J=x_{\max }^{2} /(4 \beta)
$$

Diffusion equation

$$
\frac{\delta \rho}{\delta t}=\nabla(D \cdot \nabla \rho)
$$

$$
\begin{aligned}
\rho & =\rho(?) \\
D & =D(?)
\end{aligned}
$$

Syphers

1- only one dimension
2 - assume D is scalar value
3- consider the density function in x, xp
4- transform in cylindrical coordinates
Seidel/Stancari
(only cylindrical symmetric distributions in x, xp)
5- Consider the invariant $\quad W=\left[x^{2}+x p^{2}\right] / \beta$
2-Consider the invariant $J=x_{\max }^{2} /(4 \beta)$
3 - consider the density function in J
$\frac{\delta \rho}{\delta t}=\frac{4 D}{\beta} \frac{\delta}{\delta W}\left(W \frac{\delta \rho}{\delta W}\right)$

$$
J=\frac{\varepsilon}{4} R^{2}=\frac{1}{4} W \quad \frac{\delta \rho}{\delta t}=\frac{\delta}{\delta J}\left(D(J) \frac{\delta \rho}{\delta J}\right)
$$

$$
D_{J}(J)=\frac{D_{s y}(J) J}{\beta}
$$

for brownian motion, $\mathrm{D}_{\text {sy }}=$ const. -> $\mathrm{D}_{\mathrm{J}} / \mathrm{J}$ const

Seidel/Stancari

$$
\begin{gathered}
\frac{\delta \rho}{\delta t}=\frac{\delta}{\delta J}\left(D(J) \frac{\delta \rho}{\delta J}\right) \\
\frac{\delta \rho}{\delta t}=\frac{\delta D}{\delta J} \cdot \frac{\delta \rho}{\delta J}+D \frac{\delta^{2} \rho}{\delta^{2} J}
\end{gathered}
$$

Seidel/Stancari

$$
\begin{aligned}
& \frac{\delta \rho}{\delta t}=\frac{\delta}{\delta J}\left(D(J) \frac{\delta \rho}{\delta J}\right) \quad J=\frac{\varepsilon_{1}}{4} R_{1}^{2} \\
& \frac{\delta \rho}{\delta t}=\frac{\delta D}{\delta J} \frac{\delta_{\rho}}{\delta J}+D \frac{\delta^{2} \rho}{\delta^{2} J}
\end{aligned}
$$

considering delta-like initial particle distributions in the action space, we can assume the D coefficient for be constant over the considered J range

$$
\frac{\delta \rho}{\delta t}=D \frac{\delta^{2} \rho}{\delta^{2} J}
$$

for this equation, according to Seidel, the diffusion coefficient is:

$$
D=\frac{\left\langle\Delta J^{2}\right\rangle}{2 \Delta t} \quad \begin{aligned}
& \text { change of } \rho(J) \\
& \text { width in time }
\end{aligned}
$$

Caveat! Devil's in details... (and footnotes)

Some (useful) Notation

coordinates

$$
\begin{aligned}
& x=n \sqrt{\epsilon \beta} \cdot \cos \phi \\
& x^{\prime}=n \sqrt{\epsilon \beta} \cdot(\cos \phi-\alpha \sin \phi)
\end{aligned}
$$

physical

$$
\xi=x / \sqrt{\epsilon \beta}
$$

$$
\xi^{\prime}=\left(\alpha x+\beta x^{\prime}\right) / \sqrt{\epsilon \beta}
$$

$$
x=n \sqrt{\epsilon \beta} \cdot \cos \phi
$$

$$
x p=\left(\alpha x+\beta x^{\prime}\right)
$$

Seidel/ Stancari

$$
x=n \sqrt{\epsilon \beta} \cdot \cos \phi
$$

strictly true for linear, invariant uncoupled machines. The Tevatron is not!!

$$
R=\sqrt{\xi^{2}+\xi^{\prime 2}}
$$

$$
R^{2}
$$

$J=x_{\text {max }}^{2} /(4 \beta)$

Some (useful) Notation

	coordinates		invariant
physical	... however for coupled linear machines it is possible to define three planes (eigenvectors of the one turn matrix) for whom the motion is uncoupled. Normalization is still possible.		
Floquet	$\left(\xi_{1}, \xi_{1}^{\prime}, \xi_{2}, \xi_{2}^{\prime}, \xi_{3}, \xi_{3}^{\prime}\right)$	$\begin{aligned} & \left.y, y^{\prime}, z, d p p\right)^{T} \\ & \hline R_{1}=\sqrt{\xi_{1}^{2}+\xi_{1}^{\prime 2}} \\ & R_{2}=\sqrt{\xi_{2}^{2}+\xi_{2}^{\prime 2}} \end{aligned}$	R_{1}^{2} R_{2}^{2}
Sypher	$\left(x_{1}, x p_{1}, x_{2}, x p_{2}, x_{3}, x_{3}\right)$	$\begin{gathered} \left.x, x^{\prime}, y, y^{\prime}, z, d p p\right)^{T} \\ r_{1}=\sqrt{x_{1}^{2}+x p_{1}^{2}} \\ r_{2}=\sqrt{x_{2}^{2}+x p_{2}^{2}} \end{gathered}$	$\begin{aligned} & W_{1}=r_{1}^{2} / \beta_{1} \\ & W_{2}=r_{2}^{2} / \beta_{2} \end{aligned}$
Seidel/ Stancari			$J=x_{\max }^{2} /(4 \beta)$

Some (useful) Notation

	To compensate for amplitude beating introduced by strong non coordinates linearities (BB) we consider an average amplitude over 50K turns	
physical	... however for coupled machines it is possible to define three planes (eigenvectors of the one turn matrix) for whom the motion is uncoupled. Normalization is still possible.	
Floquet	$\begin{array}{r\|} \left(\xi_{1}, \xi_{1}^{\prime}, \xi_{2}, \xi_{2}^{\prime}, \xi_{3}, \xi_{3}^{\prime}\right)=N \cdot\left(x, x^{\prime}, y, y^{\prime}, z, d p p\right)^{T} \\ \\ R_{1}=\sqrt{\xi_{1}^{2}+\xi_{1}^{\prime 2}} \\ R_{2}=\sqrt{\xi_{2}^{2}+\xi_{2}^{\prime 2}} \end{array}$	R_{1}^{2} R_{2}^{2}
Sypher	$\left(x_{1}, x p_{1}, x_{2}, x p_{2}, x_{3}, x_{3}\right)=N_{2} \cdot\left(x, x^{\prime}, y, y^{\prime}, z, d p p\right)^{T}$ $\begin{array}{l} \\ r_{1}=\sqrt{x_{1}^{2}+x p_{1}^{2}} \\ r_{2}=\sqrt{x_{2}^{2}+x p_{2}^{2}}\end{array}$	$\begin{aligned} & W_{1}=r_{1}^{2} / \beta_{1} \\ & W_{2}=r_{2}^{2} / \beta_{2} \end{aligned}$
Seidel/ Stancari		$J=x_{\max }^{2} /(4 \beta)$

Some (useful) Notation

	coordinates		invariant
physical	simulations		planes 1,2: normalized
Floquet	$\left(\xi_{1}, \xi_{1}^{\prime}, \xi_{2}, \xi_{2}^{\prime}, \xi_{3}, \xi_{3}^{\prime}\right)=N \cdot\left(x, x^{\prime}\right.$	$\begin{aligned} & \left.y, y^{\prime}, z, d p p\right)^{T} \\ & R_{1}=\sqrt{\xi_{1}^{2}+\xi_{1}^{\prime 2}} \\ & R_{2}=\sqrt{\xi_{2}^{2}+\xi_{2}^{\prime 2}} \end{aligned}$	$\begin{aligned} & R_{1}^{2} \\ & R_{2}^{2} \end{aligned}$
Sypher	$\left.x_{1}, x p_{1}, x_{2}, x p_{2}, x_{3}, x_{3}\right)=N_{2}$ we are omniscient!!!	$\begin{aligned} & \left., x^{\prime}, y, y^{\prime}, z, d p p\right) \\ & r_{1}=\sqrt{x_{1}^{2}+x p_{1}^{2}} \\ & r_{2}=\sqrt{x_{2}^{2}+x p_{n}^{2}} \end{aligned}$	$\begin{aligned} & W_{1}=r_{1}^{2} / \beta_{1} \\ & W_{2}=r_{2}^{2} / \beta_{2} \end{aligned}$
Seidel/ Stancari	x		$J=x_{\max }^{2} /\left(4 \beta_{c}\right)$

Some (useful) Notation

	coordinates		invariant
physical	$\left(x, x^{\prime}\right)$		
		simulations	planes 1,2: normalized, uncoupled
Floquet	$\left(\xi_{1}, \xi_{1}^{\prime}, \xi_{2}, \xi_{2}^{\prime}, \xi_{3}, \xi_{3}^{\prime}\right)=$	$\begin{aligned} & \left.y, y^{\prime}, z, d p p\right)^{T} \\ & R_{1}=\sqrt{\xi_{1}^{2}+\xi_{1}^{\prime 2}} \\ & R_{2}=\sqrt{\xi_{2}^{2}+\xi_{2}^{\prime 2}} \end{aligned}$	$\begin{aligned} & R_{1}^{2} \\ & R_{2}^{2} \end{aligned}$
Sypher	$\left(x_{1}, x p_{1}, x_{2}, x p_{2}, x_{3}, x_{3}\right.$	$\begin{aligned} & \left.x^{\prime}, y, y^{\prime}, z, d p p\right)^{T} \\ & r_{1}=\sqrt{x_{1}^{2}+x p_{1}^{2}} \\ & r_{2}=\sqrt{x_{0}^{2}+x p_{?}^{2}} \end{aligned}$	$\begin{aligned} & W_{1}=r_{1}^{2} / \beta_{1} \\ & W_{2}=r_{2}^{2} / \beta_{2} \end{aligned}$

Seidel/
Stancari

how do we compare the two worlds?

	coordinates		invariant
physical	$\left(x, x^{\prime}\right)$		
		simulations	planes 1,2: normalized uncoupled
Floquet	$\left(\xi_{1}, \xi_{1}^{\prime}, \xi_{2}, \xi_{2}^{\prime}, \xi_{3}, \xi_{3}^{\prime}\right)=N \cdot\left(x, x^{\prime}, y, y^{\prime}, z, d p p\right)^{T}$		$R_{1}^{2}$$R_{2}^{2}$
		$\begin{aligned} & R_{1}=\sqrt{\xi_{1}^{2}+\xi_{1}^{\prime 2}} \\ & R_{2}=\sqrt{\xi_{2}^{2}+\xi_{2}^{\prime 2}} \end{aligned}$	
Sypher	$\left(x_{1}, x p_{1}, x_{2}, x p_{2}, x_{3}, x_{3}\right)=N_{2} \cdot\left(x, x^{\prime}, y, y^{\prime}, z, d p p\right)^{T}$		$\begin{aligned} & W_{1}=r_{1}^{2} / \beta_{1} \\ & W_{2}=r_{2}^{2} / \beta_{2} \end{aligned}$
		$r_{1}=\sqrt{x_{1}^{2}+x p_{1}^{2}}$	

Seidel/
Stancari
experiment x coupled

how do we compare the two worlds?

1. where is the collimator in the $\left\langle\mathrm{A}_{1}\right\rangle,\left\langle\mathrm{A}_{2}\right\rangle$ space?
2. how do we pass from the diffusion coefficient in the normalized direction to the diffusion coefficient in the vertical direction, for each point in the $\left\langle\mathrm{A}_{1}\right\rangle,\left\langle\mathrm{A}_{2}\right\rangle$ space?
3. how do we calculate the overall diffusion coefficient seen by the collimator?
4. where is the collimator in the $\left\langle\mathrm{A}_{1}\right\rangle,\left\langle\mathrm{A}_{2}\right\rangle$ space?

$$
\text { no } B B
$$

the collimator edge is a skew line in the $<\mathrm{A}_{1}>,\left\langle\mathrm{A}_{2}\right\rangle$ plane.

1. where is the collimator in the $\left\langle\mathrm{A}_{1}\right\rangle,<\mathrm{A}_{2}>$ space?

no $B B$

the collimator edge is a skew line in the $<\mathrm{A}_{1}>,<\mathrm{A}_{2}>$ plane.
2. how do we pass from the diffusion coefficient in the normalized direction to the diffusion coefficient in the vertical direction, for each point in the $<\mathrm{A}_{1}>,<\mathrm{A}_{2}>$ space?

$$
D_{y}\left(A_{1}, A_{2}\right)=D_{1} \cos \theta+D_{2} \sin \theta
$$

collimator edge @ F48

for the linear case, the collimator edge is a skew line in the $\left\langle\mathrm{A}_{1}\right\rangle,\left\langle\mathrm{A}_{2}\right\rangle$ plane.
the angle θ is constant
collimator edge @ F48

when BB is present, the collimator edge is not a linear function of $\left.\left\langle\mathrm{A}_{1}\right\rangle,<\mathrm{A}_{2}\right\rangle$
the angle θ changes along the collimator edge
3. how do we calculate the overall diffusion coefficient seen by the collimator?
in principle, we should calculate the diffusion coefficient for each point along the collimator line and integrate keeping in consideration the population of each point.

$$
D_{\text {exp }}\left(x_{\text {coll }}\right)=\int_{x_{\text {coll }}} D\left(A_{1}, A_{2}\right) \cdot \rho\left(A_{1}, A_{2}\right) d x_{\text {coll }}
$$

$$
D_{\text {exp }}\left(x_{\text {coll }}\right)=\int_{x_{\text {coll }}} D\left(A_{1}, A_{2}\right) \cdot \rho\left(A_{1}, A_{2}\right) d x_{\text {coll }}
$$

for the linear case, the normal modes are uncoupled
calculate the diffusion coefficient would mean:

1. get $\mathrm{D}_{1}, \mathrm{D}_{2}$: sample the whole space $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and calculate $\mathrm{D}_{1}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ and $\mathrm{D}_{2}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ for each point
2. calculate $\theta\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$
3. assume some particle distribution
4. make the weighted average and calculate the overall D coefficient
```
\[
\begin{aligned}
& y_{\text {coll }}=f(A, A 2) \text { is } \\
& \text { simply a line }
\end{aligned}
\]
D1=D1(A1)
D2=D2(A2)
\(+\)
```

$$
D_{\text {exp }}\left(x_{\text {coll }}\right)=\int_{x_{\text {coll }}} D\left(A_{1}, A_{2}\right) \cdot \rho\left(A_{1}, A_{2}\right) d x_{\text {coll }}
$$

calculate the diffusion coefficient would mean:

1. get $\mathrm{D}_{1}, \mathrm{D}_{2}$: sample the whole space $\mathrm{A}_{1}, \mathrm{~A}_{2}$ and calculate $\mathrm{D}_{1}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ and $\mathrm{D}_{2}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)$ for each point
2. calculate $\theta\left(\mathrm{A}_{1}, \mathrm{~A}_{2}\right)$
3. assume some particle distribution
4. make the weighted average and calculate the overall D coefficient

$$
D_{\text {exp }}\left(x_{\text {coll }}\right)=\int_{x_{\text {coll }}} D\left(A_{1}, A_{2}\right) \cdot \rho\left(A_{1}, A_{2}\right) d x_{\text {coll }}
$$

beam beam effect couples the normal modes!

1. get D_{1}, D_{2} : sample the and calculate $D_{1}(A)^{2}$ this is hell for

$$
\begin{aligned}
& D 1=D 1(A 1, A 2) \\
& D 2=D 2(A 1, A 2)
\end{aligned}
$$

2. calculate

3. assume somp pancle distribution

$$
\begin{aligned}
& \text { Yooll is a } \\
& \text { complicated } \\
& \text { function }
\end{aligned}
$$

4. make the weigitud average and calculate the overall D coefficient

Shortcut N.1

Simulation Inputs

- lifetrac code
- standard optics, chromaticity on, collisions OFF
- random noise matrix, independent on particle amplitude
- simulations with and without Beam Beam, with and without electron lens
- electron lens: typical TELん parameters
- 1K particle with narrow distribution in the $\mathrm{A}_{1}, \mathrm{~A}_{2}$ space (about 0.02 sigma).
- Center of the distribution between 1 and 8 sigma
- steps of $250 K$ turns, about 25 steps (about 2.5 min)

from few slides before...

considering delta-like initial particle distributions in the action space, we can assume the D coefficient for be constant over the considered J range
for each skew plane we can write the diffusion equation and, according to Seidel, the diffusion coefficient is:

$$
\begin{aligned}
& D_{1,2}=\frac{\left\langle\Delta J_{1,2}^{2}\right\rangle}{2 \Delta t} \begin{array}{l}
\text { change of } \rho(J) \\
\text { width in time }
\end{array} \\
& J_{1,2}=\frac{\varepsilon_{1,2}}{4} R_{1,2}^{2}
\end{aligned}
$$

Amplitude Evolution

Amplitude Evolution

1 sigma
2 sigma
3 sigma
4 sigma
5 sigma
6 sigma
7 sigma
8 sigma
the diffusion is generally higher. Starting from 8 sigma the beam "explodes"
-> dynamic aperture due to parassitic crossing in agreement with measurements

The Dynamic Aperture Limit

https://indico.fnal.gov/getFile.py/access?contribId=27\&sessionId=12\&resId=0\&materialId=0\&confId=5072

Amplitude Evolution

D Vs J:

D Vs J:

random noise
no BB
BB BB+elense \square
BE effect
electron lens
the ratio $\mathrm{D}_{\mathrm{J}} / \mathrm{J}$ is not constant anymore. Strong dependency on J.

- Up to 4 sigma the beam behaviour is unchanged
- Over 4 sigma the diffusion coefficient increases of up a factor 10K
experimental conditions: $B B$ but not elense
Vertical collimator position [σ]

experimental conditions: $B B$ but not elense
Vertical collimator position [σ]

experimental conditions: $B B$ but not elense
Vertical collimator position [σ]

Shortcut N.2: Fma Plots

- FIMA (frequency map analysis) measures the main betatron tune jitter in logarithmic scale (here presented in the average amplitude space)
- it shows the machine resonances
- the diffusion index i (tune jitter) is a qualitative measure of $\mathrm{D}_{\mathrm{J}} / \mathrm{J}$ - unfortunately we do not know exact formula to relate the two...
- it allows us to have a qualitative, but global picture of the change in diffusion

$B B$ effect

storage mode

storage mode

electron lens

$B B$ effect

electron Lens

storage mode

storage mode

electron lens

BB effect

electron Lens

A Different Approach

- Simulate the experiment directly!
- Does not provide insights

Conclusions

- Diffusion coefficients have been calculated in the normalized planed for a sampling of the $\left\langle\mathrm{A}_{1}\right\rangle,\left\langle\mathrm{A}_{2}\right\rangle$ space
- As expected, in case of random noise, $\mathrm{D}_{\mathrm{J}} / \mathrm{J}$ is constant, about $5 \mathrm{e}-8 \mu \mathrm{~m} / \mathrm{s}$
- With the BB case, a factor 2 to 10 in diffusion increase is estimated.
- Even with BB included, the diffusion coefficient n simulations is still many orders of magnitudes lower than the experimental one.
- Including a basic description of the electron lens, particles with amplitude larger than the inner electron lens radius diffuse with a much faster rate ($10 \mathrm{~K} x$ factor). The core is untouched.
- fma plots show a global picture of the diffusion index in the amplitude space, showing clearly the influence of elense.
- Different approaches are proposed.

