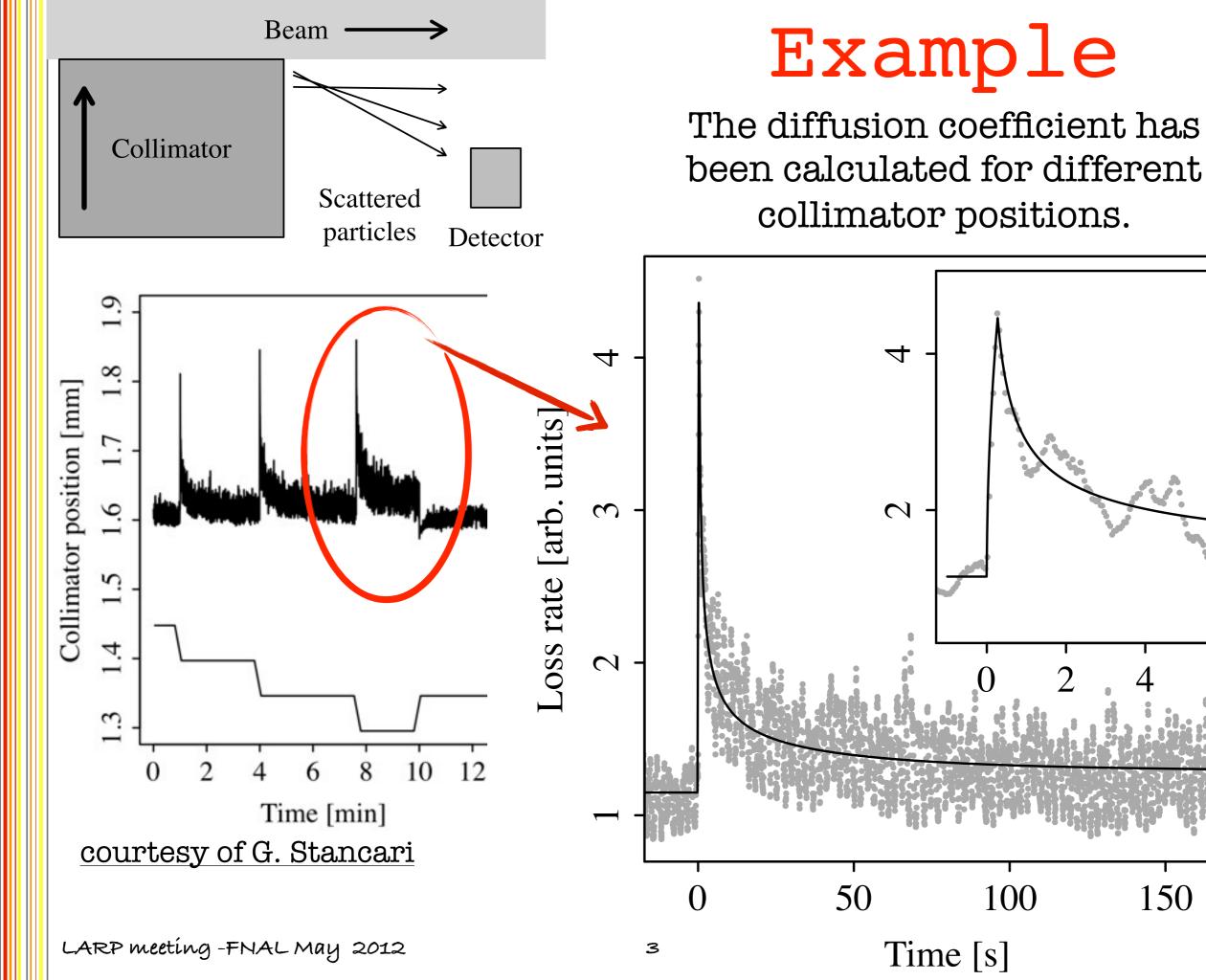


Numerical Simulations Of Beam Transverse Diffusion

V. Prevítalí D. Shatílov, G. Stancarí, A. Valíshev

Experimental Measurements

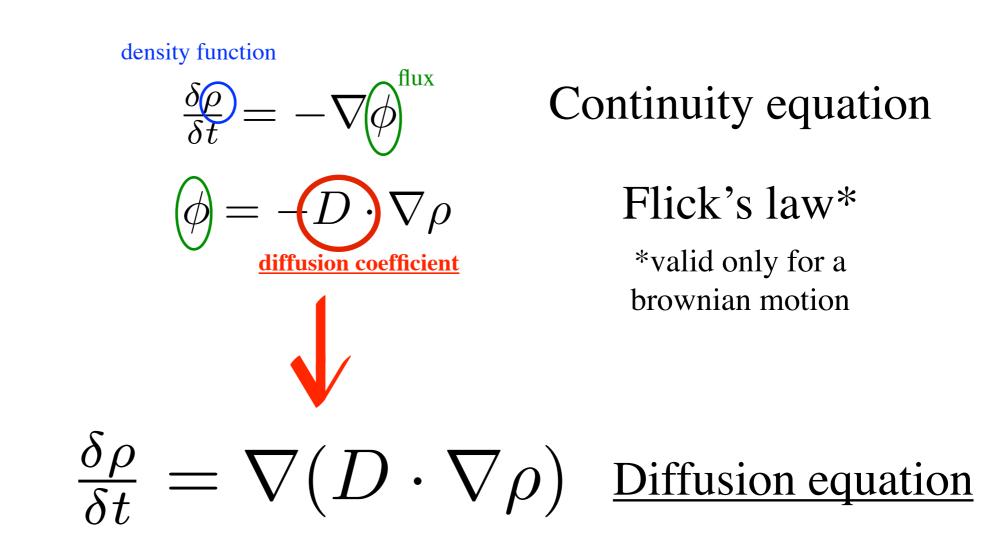
- Assuming that the diffusion equation regulates the time evolution of the particle amplitudes, it is possible to correlate the beam losses produced by a small collimator movement with the local diffusion coefficient.
 - "Baby step" collimator measurements on the antiproton halo for different collimator positions, with and without BB, with and without Electron Lens
- analysis done by G. Stancari

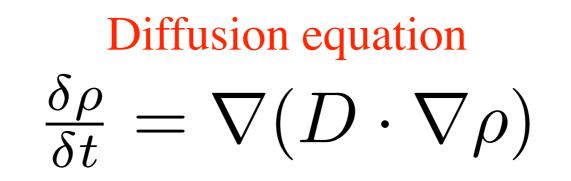


Experimental Measurements

- Assuming that the diffusion equation regulates the time evolution of the particle amplitudes, it is possible to correlate the beam losses produced by a small collimator movement with the local diffusion coefficient.
- "Baby step" collimator measurements on the antiproton halo for different collimator positions, with and without BB, with and without Electron Lens
- <u>analysis done by G. Stancari</u>
- my task: reproduce the diffusion coefficient with lifetrack

Some Background: The Diffusion Model





 $\rho = \rho(?)$ D = D(?)

Diffusion equation $\frac{\delta\rho}{\delta t} = \nabla (D \cdot \nabla \rho)$

 $\rho = \rho(?)$ D = D(?)

Syphers

1- only one dimension

2- assume D is scalar value

3- consider the density function in x, xp

4- transform in cylindrical coordinates

(only cylindrical symmetric distributions in x, xp)

5- Consider the invariant

 $\frac{\delta\rho}{\delta t} = \frac{4D}{\beta} \frac{\delta}{\delta W} \left(W \frac{\delta\rho}{\delta W} \right)$

 $W = [x^2 + xp^2]/\beta$

Seidel/Stancari

1- only one dimension 2-Consider the invariant $J = x_{max}^2/(4\beta)$ 3- consider the density function in J

$$\frac{\delta\rho}{\delta t} = \frac{\delta}{\delta J} \left(D(J) \frac{\delta\rho}{\delta J} \right)$$

	coordinates		invariant
physical	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$ $x' = n\sqrt{\epsilon\beta} \cdot (\cos\phi - \alpha\sin\phi)$		
Floquet	$\begin{aligned} \xi &= x/\sqrt{\epsilon\beta} \\ \xi' &= (\alpha x + \beta x')/\sqrt{\epsilon\beta} \end{aligned}$	$R = \sqrt{\xi^2 + \xi'^2}$	R^2
Sypher	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$ $xp = (\alpha x + \beta x')$	$r = \sqrt{x^2 + xp^2} =$ $= R\sqrt{\epsilon\beta}$	$\begin{split} W &= r^2/\beta \\ &= R^2 \varepsilon \end{split}$
Seidel/ Stancari	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$		$J = x_{max}^2 / (4\beta)$

	coordinates		invariant
physical	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$ $x' = n\sqrt{\epsilon\beta} \cdot (\cos\phi - \alpha\sin\phi)$	$equive J = rac{arepsilon}{4}R^2$	
Floquet	$\begin{aligned} \xi &= x/\sqrt{\epsilon\beta} \\ \xi' &= (\alpha x + \beta x')/\sqrt{\epsilon\beta} \end{aligned}$	$R = \sqrt{\xi^2 + \xi'^2}$	R^2
Sypher	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$ $xp = (\alpha x + \beta x')$	$r = \sqrt{x^2 + xp^2} =$ $= R\sqrt{\epsilon\beta}$	$W = r^2 / \beta$ $= R^2 \varepsilon$
Seidel/ Stancari	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$		$J = x_{max}^2 / (4\beta)$

Diffusion equation $\frac{\delta\rho}{\delta t} = \nabla (D \cdot \nabla \rho)$

 $\rho = \rho(?)$ D = D(?)

Syphers

1- only one dimension

2- assume D is scalar value

3- consider the density function in x, xp

4- transform in cylindrical coordinates

lindriaal . . nl (0

5-

Seidel/Stancari

To only cylindrical symmetric distributions in x, xp)
Since Consider the invariant
$$W = [x^2 + xp^2]/\beta$$

 $\delta \rho = \frac{4D}{\beta} \frac{\delta}{\delta W} \left(W \frac{\delta \rho}{\delta W} \right)$
 $J = \frac{\varepsilon}{4}R^2 = \frac{1}{4}W$
 $D_J(J) = \frac{D_{sy}(J)J}{\beta}$ for brownian motion,
 $D_{sy} = \text{const.} -> D_J / J \text{ const.}$

Seidel/Stancari

$$J = \frac{\varepsilon_1}{4} R_1^2$$
$$\frac{\delta\rho}{\delta t} = \frac{\delta}{\delta J} \left(D(J) \frac{\delta\rho}{\delta J} \right)$$
$$\frac{\delta\rho}{\delta t} = \frac{\delta D}{\delta J} \cdot \frac{\delta\rho}{\delta J} + D \frac{\delta^2 \rho}{\delta^2 J}$$

Seidel/Stancari

$$J = \frac{\varepsilon_1}{4} R_1^2$$
$$\frac{\delta\rho}{\delta t} = \frac{\delta}{\delta J} \left(D(J) \frac{\delta\rho}{\delta J} \right)$$
$$\frac{\delta\rho}{\delta t} = \frac{\delta D}{\delta J} \frac{\delta\rho}{\delta J} + D \frac{\delta^2 \rho}{\delta^2 J}$$

considering delta-like initial particle distributions in the action space, we can assume the D coefficient for be constant over the considered J range

$$\frac{\delta\rho}{\delta t} = D \frac{\delta^2 \rho}{\delta^2 J}$$

for this equation, according to Seidel, the diffusion coefficient is:

$$D=rac{\langle \Delta J^2
angle}{2\Delta t}$$
 change of $ho(J)$ width in time

LARP meeting -FNAL May 2012

Caveat! Devil's in details... (and footnotes)

	coordinates	strictly true for <u>linear</u> ,	invariant
physical	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$ $x' = n\sqrt{\epsilon\beta} \cdot (\cos\phi - \alpha\sin\phi)$	<u>uncoupled machines.</u> The Tevatron is not!!	
Floquet	$\begin{aligned} \xi &= x/\sqrt{\epsilon\beta} \\ \xi' &= (\alpha x + \beta x')/\sqrt{\epsilon\beta} \end{aligned}$	$R = \sqrt{\xi^2 + \xi'^2}$	R^2
Sypher	$\begin{aligned} x &= n\sqrt{\epsilon\beta} \cdot \cos\phi \\ xp &= (\alpha x + \beta x') \end{aligned}$	$r = \sqrt{x^2 + xp^2} =$ $= R\sqrt{\epsilon\beta}$	$\begin{split} W &= r^2/\beta \\ &= R^2 \varepsilon \end{split}$
Seidel/ Stancari	$x = n\sqrt{\epsilon\beta} \cdot \cos\phi$		$J = x_{max}^2 / (4\beta)$

	coordinates			invariant
physical	(x, x')	to define three pla matríx) for wh	nes (eígenvec	ichines it is possible tors of the one turn n is uncoupled. I possible.
Floquet	$(\xi_1,\xi_1',\xi_2,\xi_2',\xi_3,\xi_3') =$	$R_1 = \sqrt{2}$	$\frac{dpp}{\sqrt{\xi_1^2 + \xi_1'^2}} \sqrt{\frac{\xi_1^2 + \xi_1'^2}{\xi_2^2 + \xi_2'^2}}$	$\begin{array}{c} R_1^2 \\ R_2^2 \end{array}$
Sypher	$(x_1, xp_1, x_2, xp_2, x_3, x_3)$	$r_1 = $	$(y', z, dpp)^T$ $\sqrt{x_1^2 + xp_1^2}$ $\sqrt{x_2^2 + xp_2^2}$	$W_1 = r_1^2 / \beta_1$ $W_2 = r_2^2 / \beta_2$
Seidel/ Stancari				$J = x_{max}^2 / (4\beta)$

	coordinates	To compensate for amplitude beating in linearities (BB) we consider an <u>average</u>	v
physical	(x, x')	however for coupled- linear ma to define three planes (eigenvec matrix) for whom the motio Normalization is stil	tors of the one turn n ís uncoupled.
Floquet	$(\xi_1,\xi_1',\xi_2,\xi_2',\xi_3,\xi_3') =$	$= N \cdot (x, x', y, y', z, dpp)^T$ $R_1 = \sqrt{\xi_1^2 + \xi_1'^2}$ $R_2 = \sqrt{\xi_2^2 + \xi_2'^2}$	$\begin{array}{c} R_1^2 \\ R_2^2 \end{array}$
Sypher	$(x_1, xp_1, x_2, xp_2, x_3, x_3)$	$S_{3} = N_{2} \cdot (x, x', y, y', z, dpp)^{T}$ $r_{1} = \sqrt{x_{1}^{2} + xp_{1}^{2}}$ $r_{2} = \sqrt{x_{2}^{2} + xp_{2}^{2}}$	$W_1 = r_1^2 / \beta_1$ $W_2 = r_2^2 / \beta_2$
Seidel/ Stancari			$J = x_{max}^2 / (4\beta_{\rm c})$

	coordinates		invariant
physical	(x, x')	ations p	lanes 1,2: normalízed,
			uncoupled
Floquet	$(\xi_1, \xi'_1, \xi_2, \xi'_2, \xi_3, \xi'_3) = N \cdot (x, x')$	$(y, y', z, dpp)^T$ $R_1 = \sqrt{\xi_1^2 + \xi_1'^2}$ $R_2 = \sqrt{\xi_2^2 + \xi_2'^2}$	$\begin{array}{c} R_1^2 \\ R_2^2 \end{array}$
Sypher	$(x_1,xp_1,x_2,xp_2,x_3,x_3)=N_2\cdot (x_1,xp_1,x_2,xp_2,x_3,x_3)$		$W_1 = r_1^2 / \beta_1$ $W_2 = r_2^2 / \beta_2$
Seidel/ Stancari	x		$J = x_{max}^2 / (4\beta_{\rm c})$

	coordinates		invariant
physical	(x, x')	ations P	lanes 1,2: normalized,
			uncoupled
Floquet	$(\xi_1, \xi'_1, \xi_2, \xi'_2, \xi_3, \xi'_3) = N \cdot (x, x')$	$(y, y', z, dpp)^T$ $R_1 = \sqrt{\xi_1^2 + \xi_1'^2}$ $R_2 = \sqrt{\xi_2^2 + \xi_2'^2}$	$\begin{array}{c} R_1^2 \\ R_2^2 \end{array}$
Sypher	$(x_1, xp_1, x_2, xp_2, x_3, x_3) = N_2 \cdot ($	$[x, x', y, y', z, dpp]^T$ $r_1 = \sqrt{x_1^2 + xp_1^2}$ $r_2 = \sqrt{x_2^2 + xp_2^2}$	$W_1 = r_1^2 / \beta_1$ $W_2 = r_2^2 / \beta_2$
Seidel/ Stancari	x we don't know	<mark>íment</mark> much	$J = x_{max}^2 / (4\beta_c)$ planes x,y: physical,
			coupled

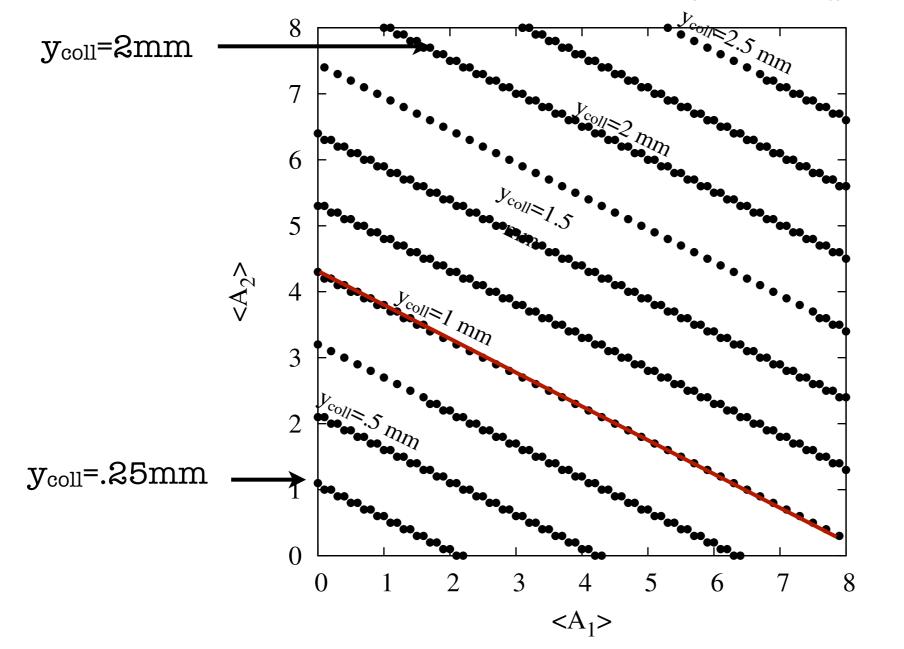
how do we compare the two worlds?

	coordinates		invariant
physical	(x, x')		
	Simul	ations P	lanes 1,2: normalized, uncoupled
Floquet	$(\xi_1, \xi'_1, \xi_2, \xi'_2, \xi_3, \xi'_3) = N \cdot (x, x')$	$(x, y, y', z, dpp)^T$ $R_1 = \sqrt{\xi_1^2 + \xi_1'^2}$ $R_2 = \sqrt{\xi_2^2 + \xi_2'^2}$	$\begin{array}{c} R_1^2 \\ R_2^2 \end{array}$
Sypher	$(x_1, xp_1, x_2, xp_2, x_3, x_3) = N_2 \cdot ($	$(x, x', y, y', z, dpp)^T$ $r_1 = \sqrt{x_1^2 + xp_1^2}$ $r_2 = \sqrt{x_2^2 + xp_2^2}$	$W_1 = r_1^2 / \beta_1$ $W_2 = r_2^2 / \beta_2$
Seidel/ Stancari	x x	iment	$J=x_{max}^2/(4eta_{ m c})$ planes x,y: physical,
			coupled

how do we compare the two worlds?

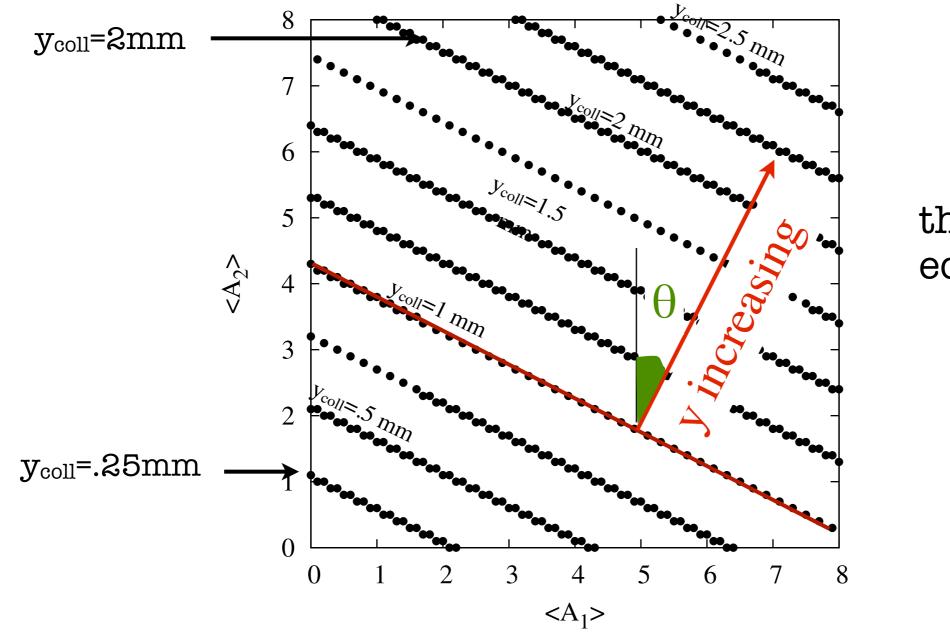
- 1. where is the collimator in the $\langle A_1 \rangle$, $\langle A_2 \rangle$ space?
- 2. how do we pass from the diffusion coefficient in the normalized direction to the diffusion coefficient in the vertical direction, for each point in the <A₁>, <A₂> space?
- 3. how do we calculate the overall diffusion coefficient seen by the collimator?

1. where is the collimator in the $\langle A_1 \rangle$, $\langle A_2 \rangle$ space?



the collimator edge is a skew line in the <A₁>, <A₂> plane.

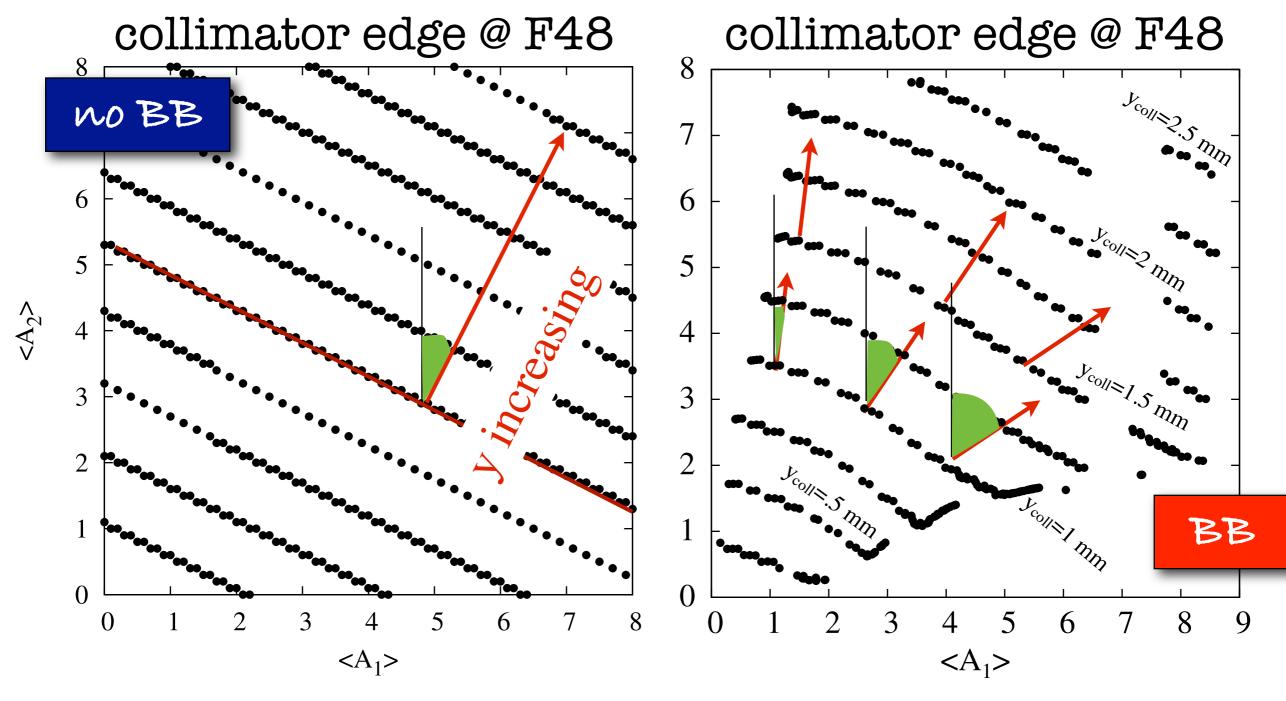
1. where is the collimator in the <A₁>, <A₂> space?



the collimator edge is a skew line in the <A₁>, <A₂> plane.

2. how do we pass from the diffusion coefficient in the normalized direction to the diffusion coefficient in the vertical direction, for each point in the $<A_1>$, $<A_2>$ space?

$$D_y(A_1, A_2) = D_1 \cos \theta + D_2 \sin \theta$$



for the linear case, the collimator edge is a skew line in the <A_1>, <A_2> plane.

the angle $\boldsymbol{\theta}$ is constant

when BB is present, the collimator edge is not a linear function of <A₁>, <A₂>

the angle θ changes along the collimator edge

3. how do we calculate the overall diffusion coefficient seen by the collimator?

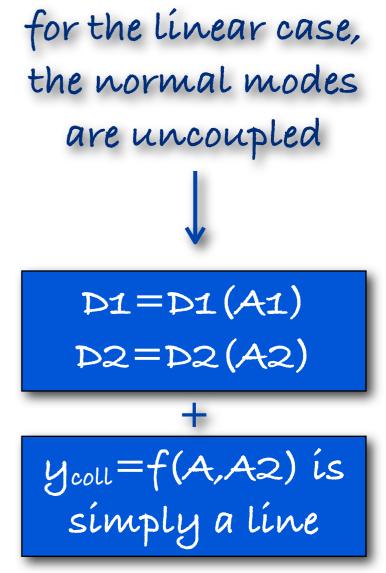
in principle, we should calculate the diffusion coefficient for each point along the collimator line and integrate keeping in consideration the population of each point.

$$D_{exp}(x_{coll}) = \int_{x_{coll}} D(A_1, A_2) \cdot \rho(A_1, A_2) \ dx_{coll}$$

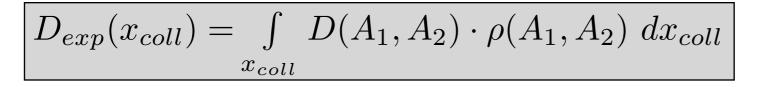
$$D_{exp}(x_{coll}) = \int_{x_{coll}} D(A_1, A_2) \cdot \rho(A_1, A_2) \ dx_{coll}$$

calculate the diffusion coefficient would mean:

- 1. get D_1, D_2 : sample the whole space A_1, A_2 and calculate $D_1(A_1, A_2)$ and $D_2(A_1, A_2)$ for each point
- 2. calculate $\theta(A_1, A_2)$
- 3. assume some particle distribution
- 4. make the weighted average and calculate the overall D coefficient

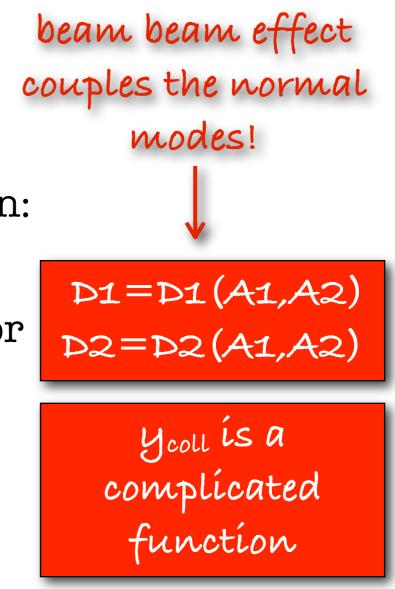


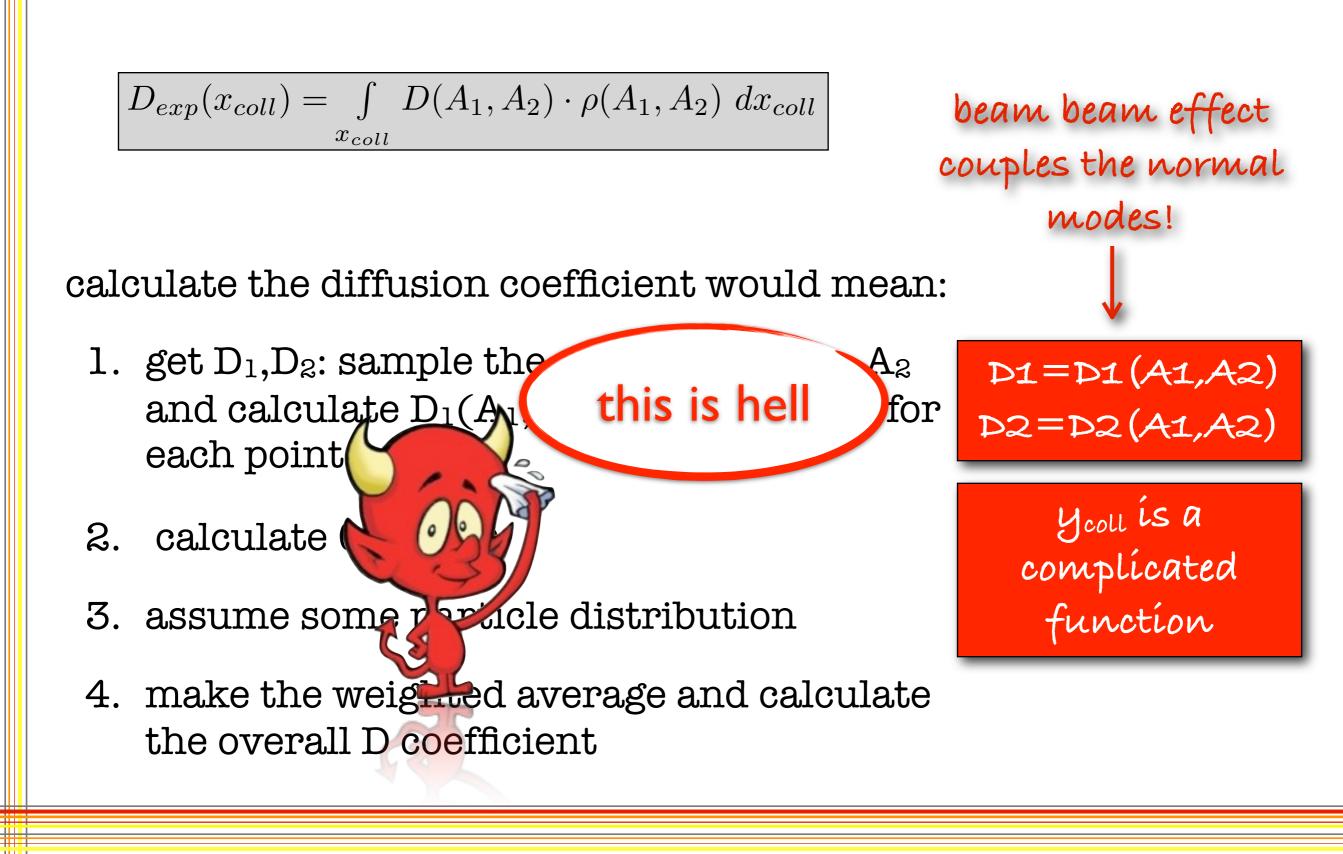
V. Prevítalí



calculate the diffusion coefficient would mean:

- 1. get D_1, D_2 : sample the whole space A_1, A_2 and calculate $D_1(A_1, A_2)$ and $D_2(A_1, A_2)$ for each point
- 2. calculate $\theta(A_1, A_2)$
- 3. assume some particle distribution
- 4. make the weighted average and calculate the overall D coefficient

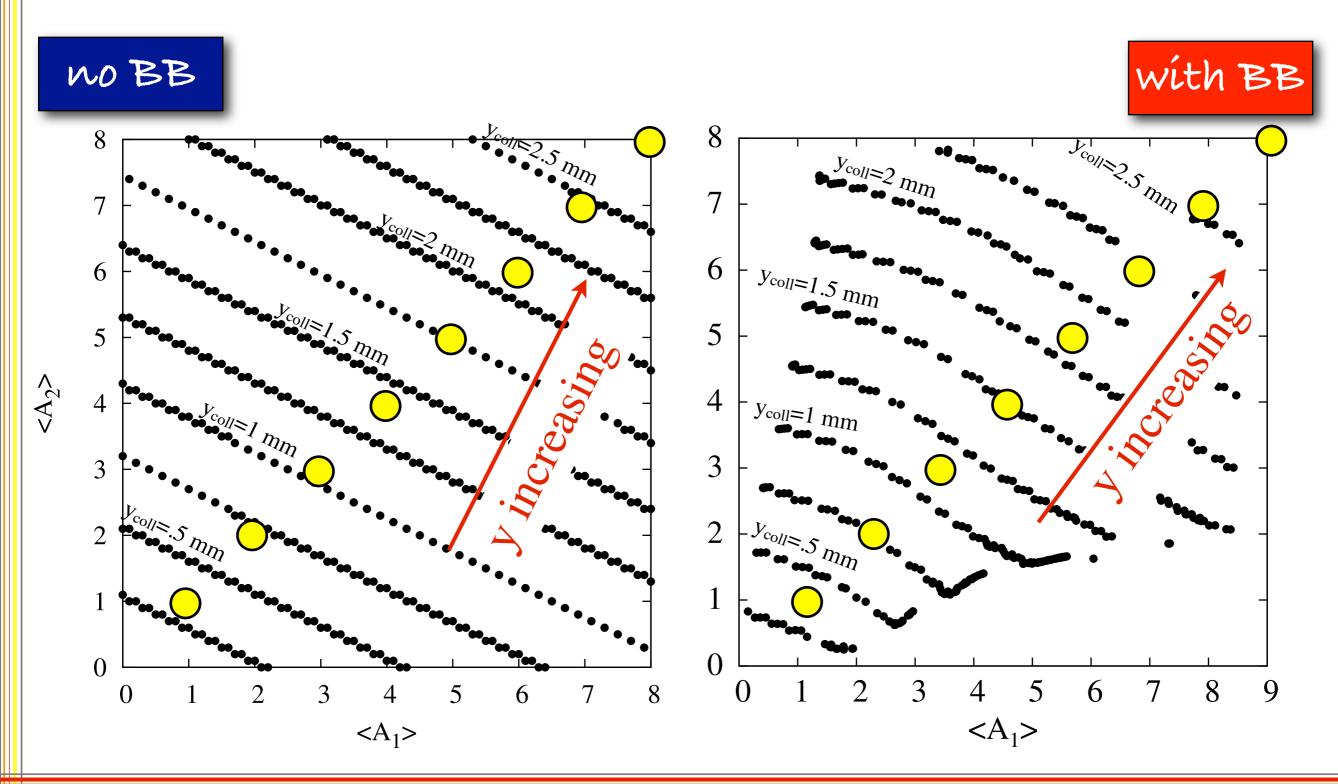




LARP meeting -FNAL May 2012

V. Prevítalí

Shortcut N.1



LARP meeting -FNAL May 2012

28

Simulation Inputs

- lifetrac code
- standard optics, chromaticity on, collisions OFF
- random noise matrix, independent on particle amplitude
- simulations with and without Beam Beam, with and without electron lens
- electron lens: typical TEL2 parameters
- 1K particle with narrow distribution in the A_1, A_2 space (about 0.02 sigma).
- Center of the distribution between 1 and 8 sigma
- steps of 250K turns, about 25 steps (about 2.5 min)

from few slides before...

considering <u>delta-like initial particle distributions</u> in the action space, we can assume the D coefficient for be constant over the considered J range

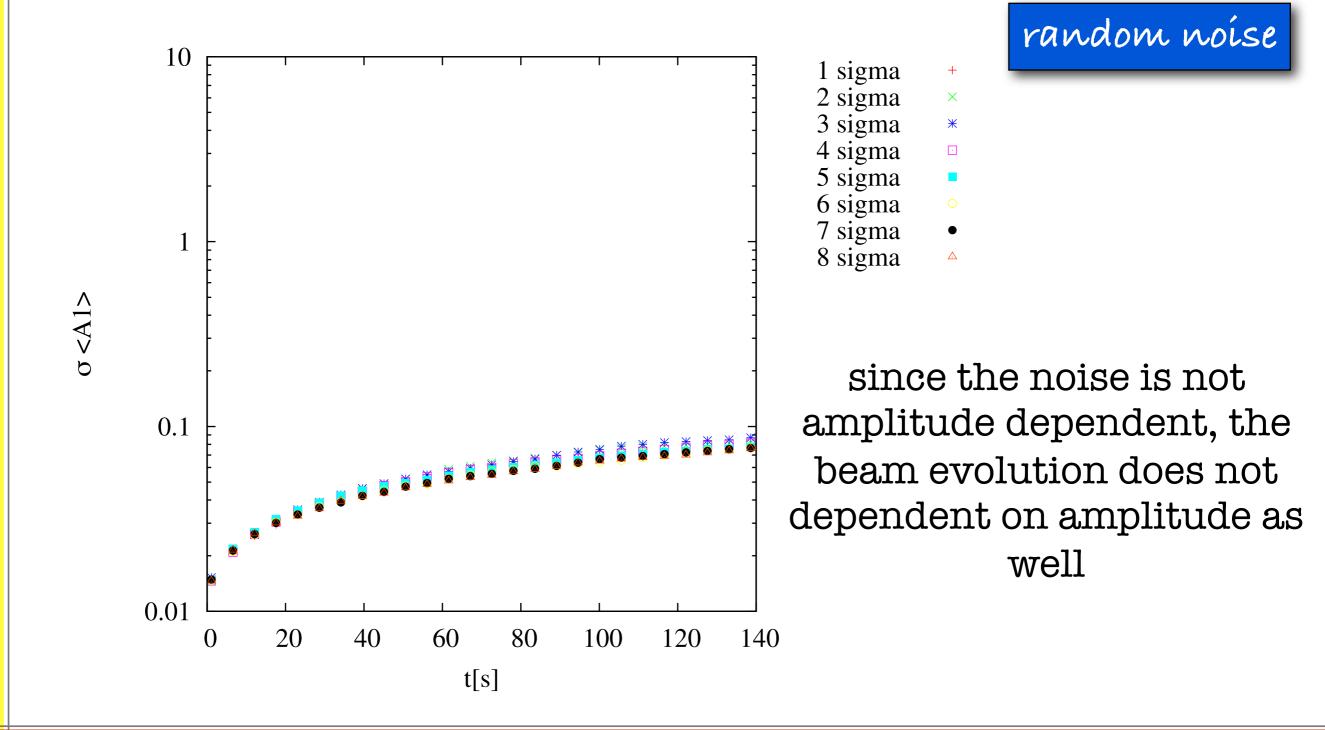
for each skew plane we can write the diffusion equation and, according to Seidel, the diffusion coefficient is:

$$D_{\!\scriptscriptstyle 1,2} = rac{\langle \Delta J_{\!\scriptscriptstyle 1,2}^2
angle}{2\Delta t}$$

change of
$$ho(J)$$
 width in time

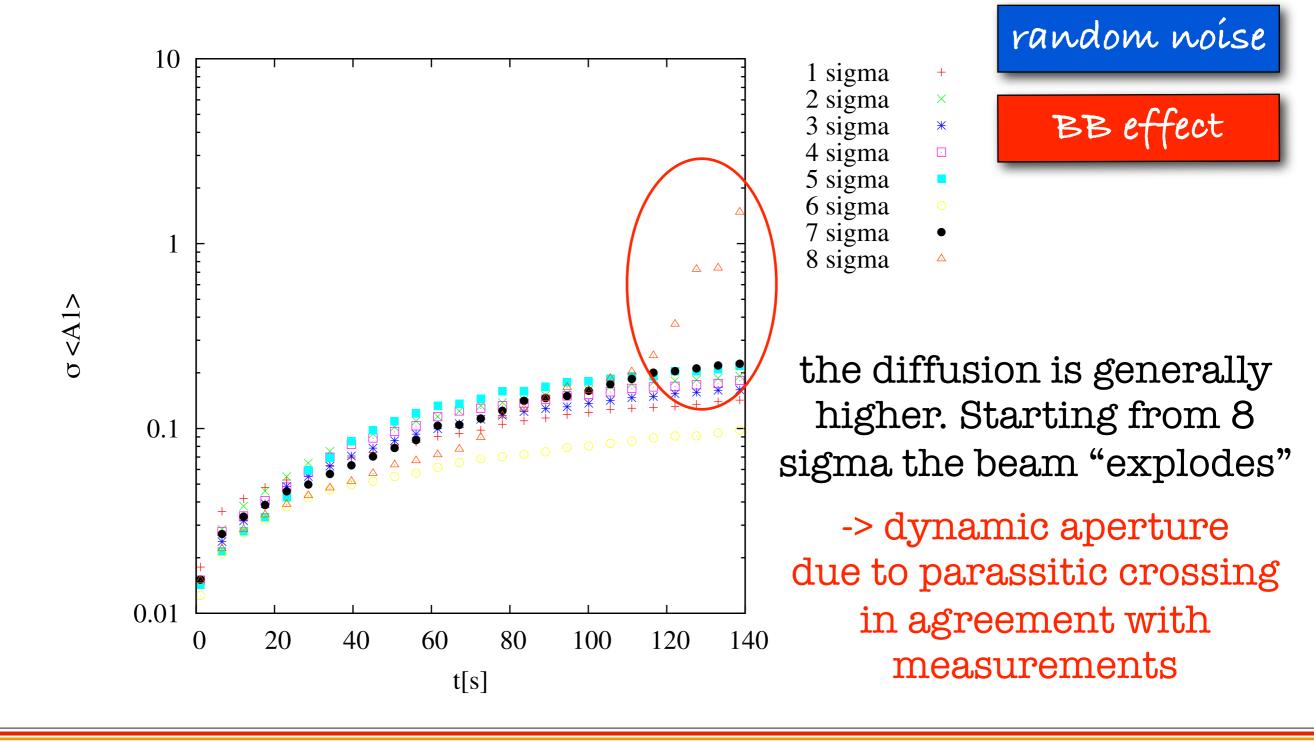
$$J_{1,2} = \frac{\varepsilon_{1,2}}{4} R^2_{1,2}$$

Amplitude Evolution



LARP meeting -FNAL May 2012

Amplitude Evolution

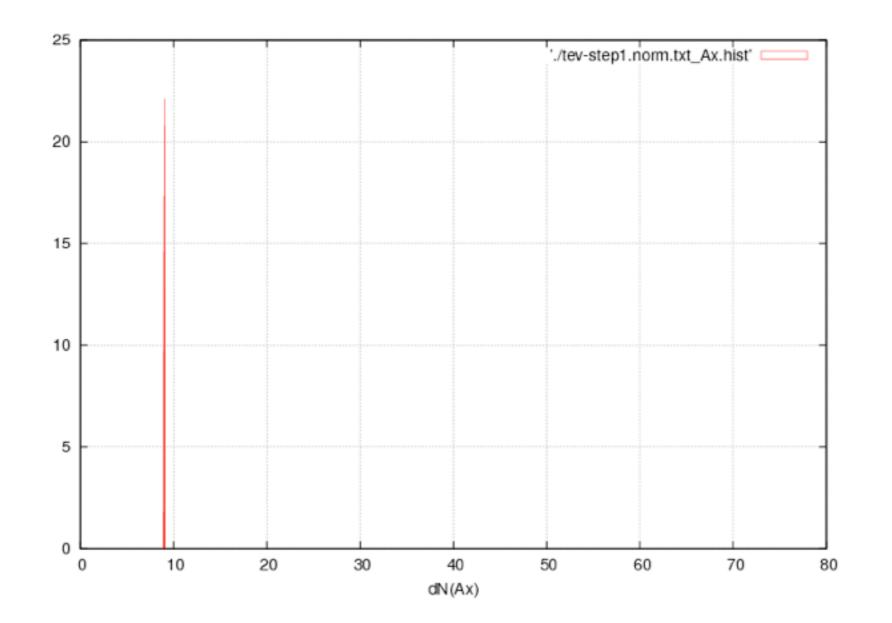


LARP meeting -FNAL May 2012

V. Prevítalí

32

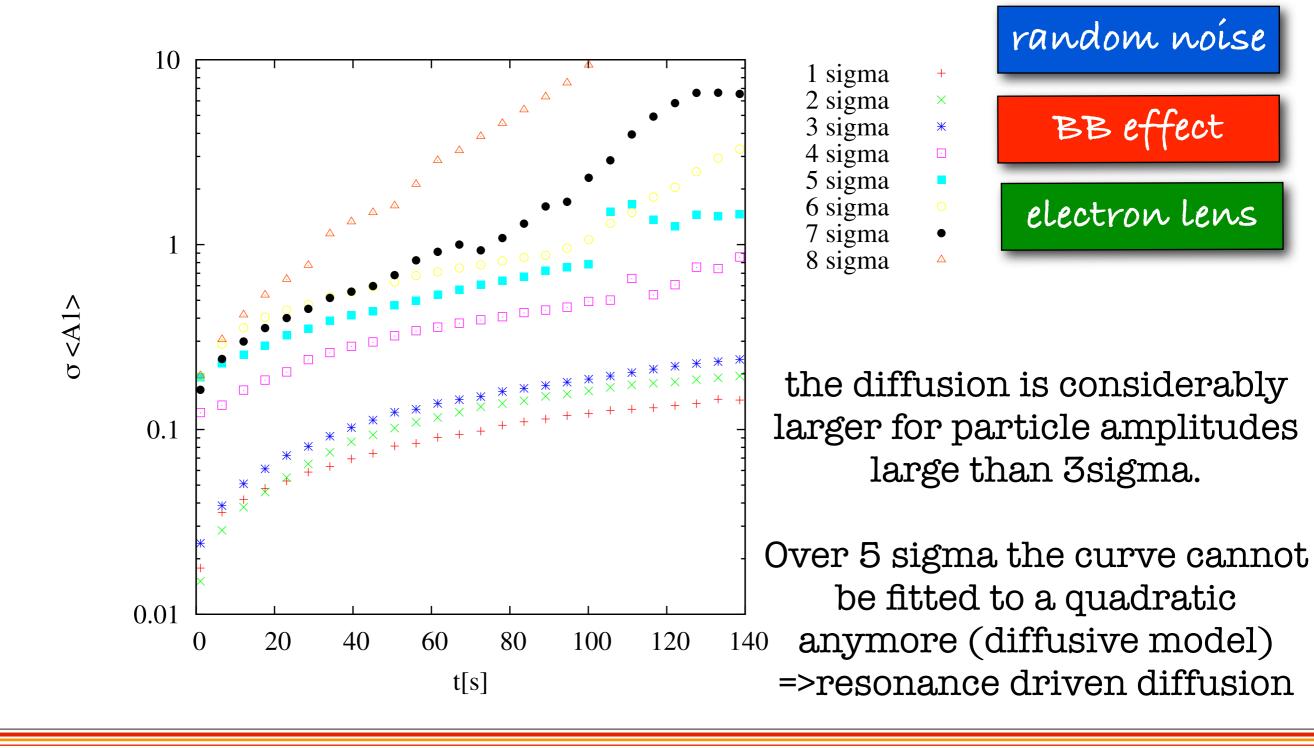
The Dynamic Aperture Limit



https://indico.fnal.gov/getFile.py/access?contribId=27&sessionId=12&resId=0&materialId=0&confId=5072

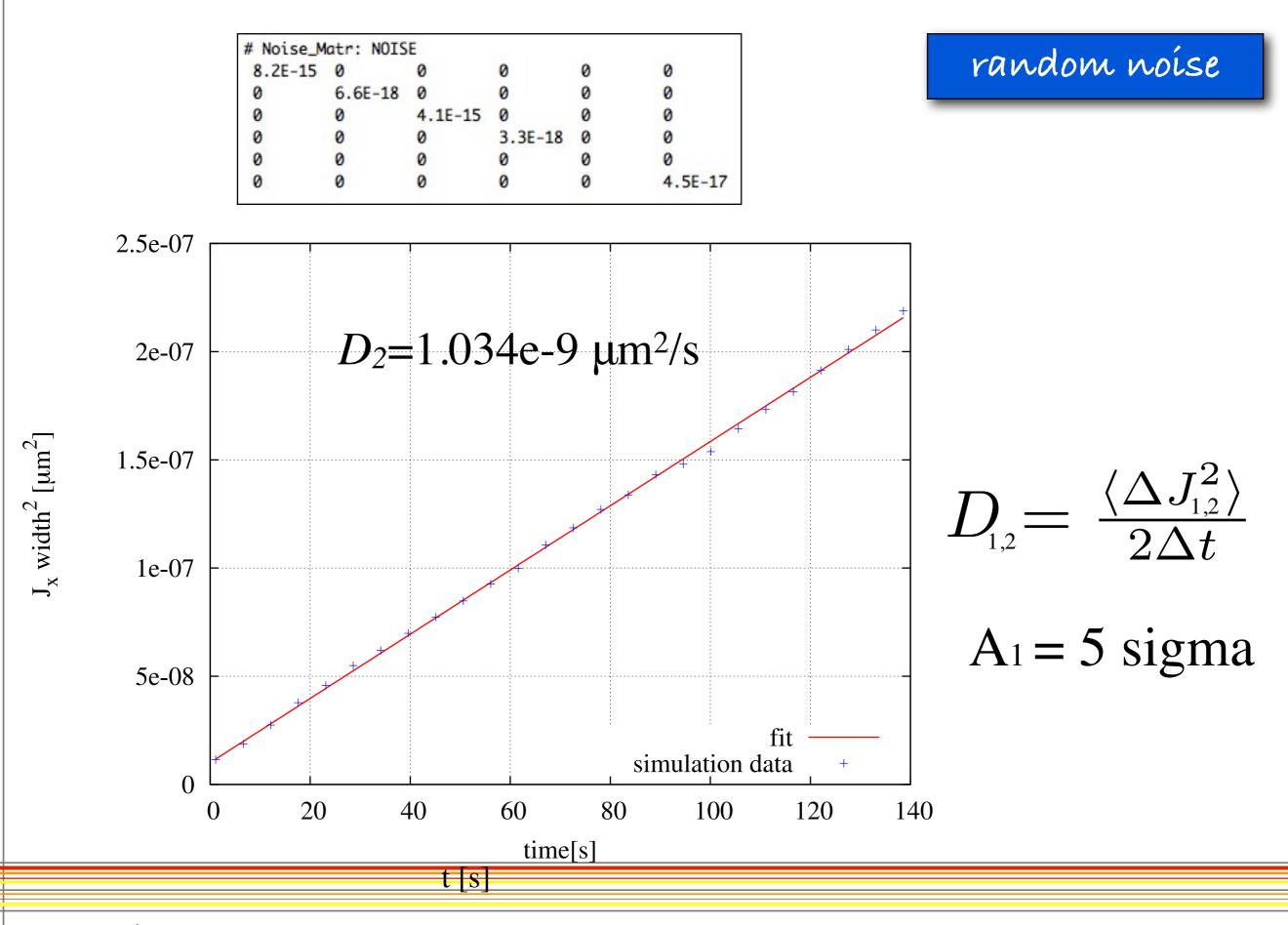
LARP meeting -FNAL May 2012

Amplitude Evolution



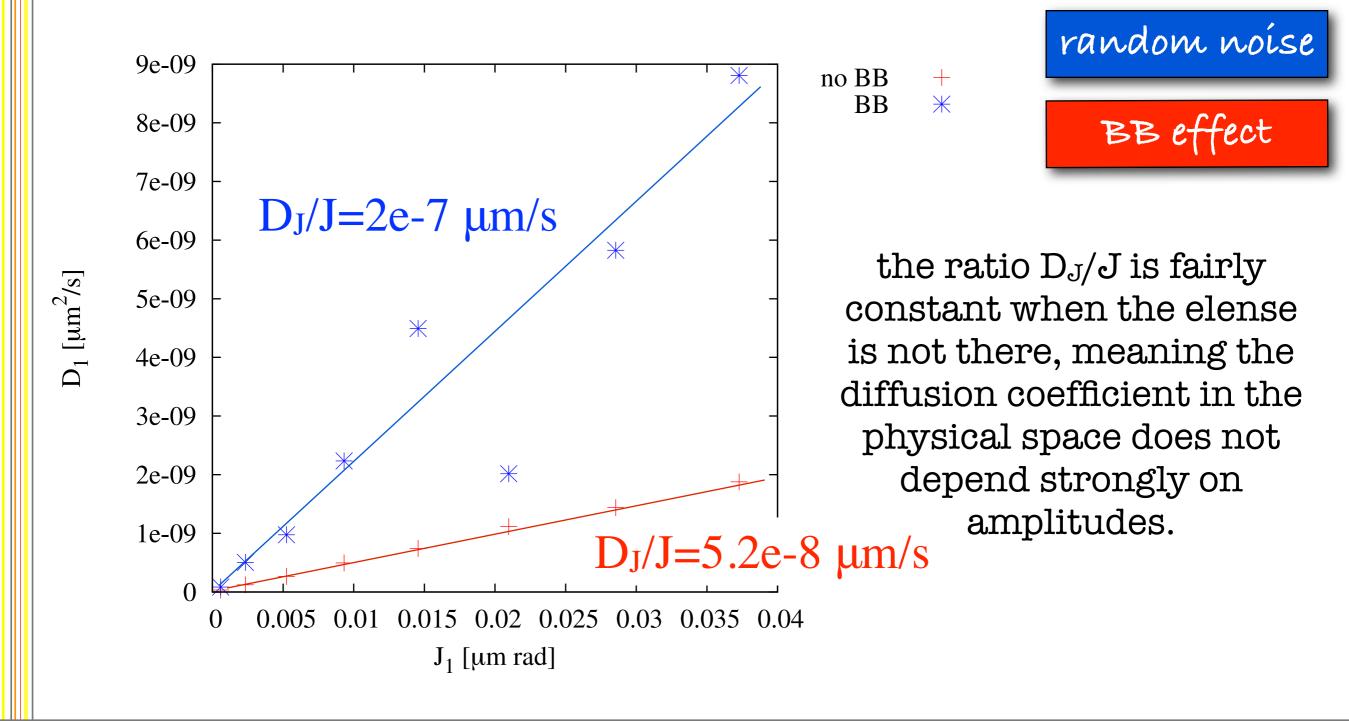
LARP meeting -FNAL May 2012

V. Prevítalí

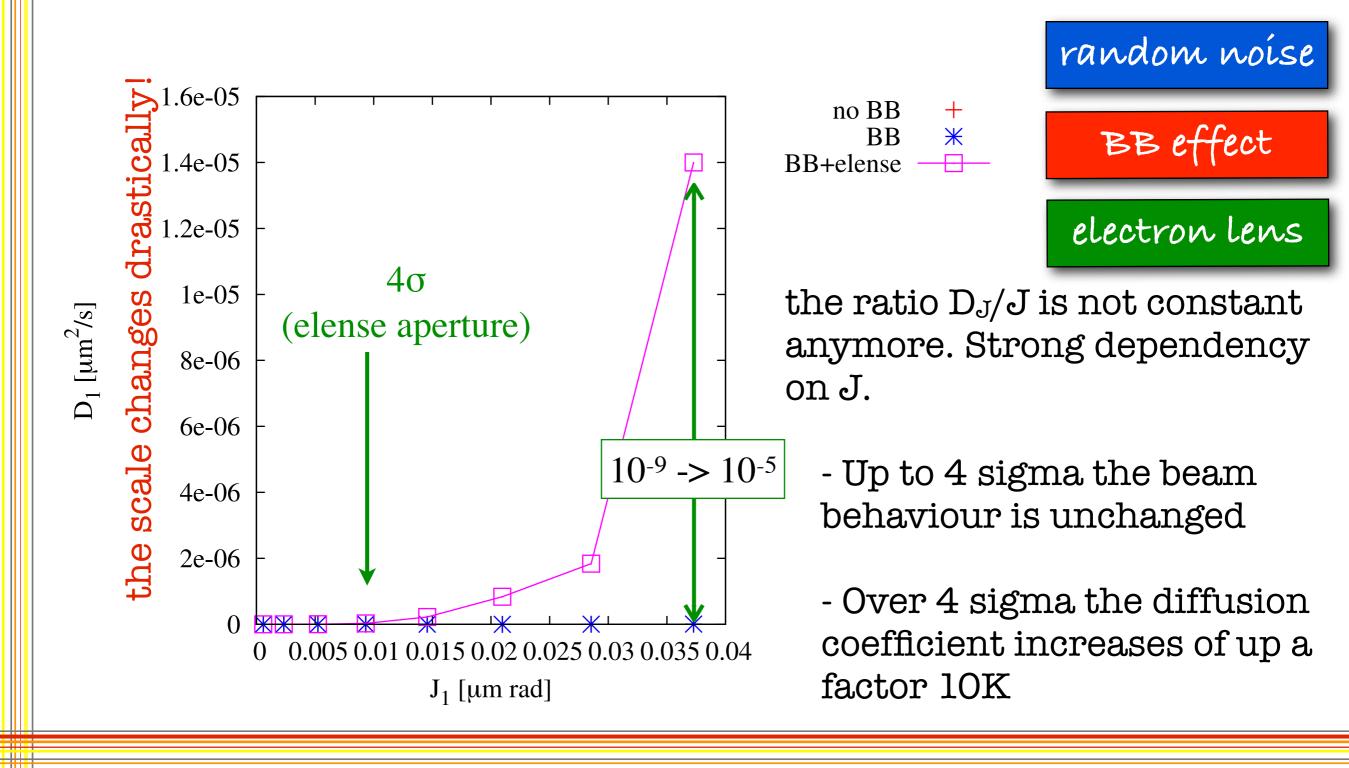


LARP meeting -FNAL May 2012

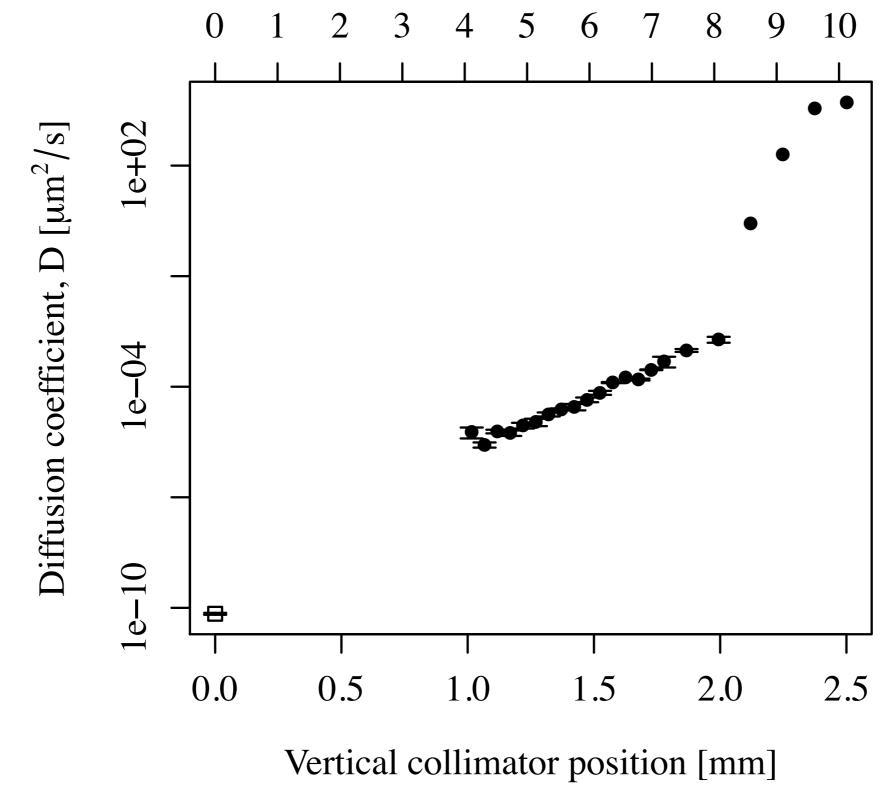
D Vs J:



D Vs J:

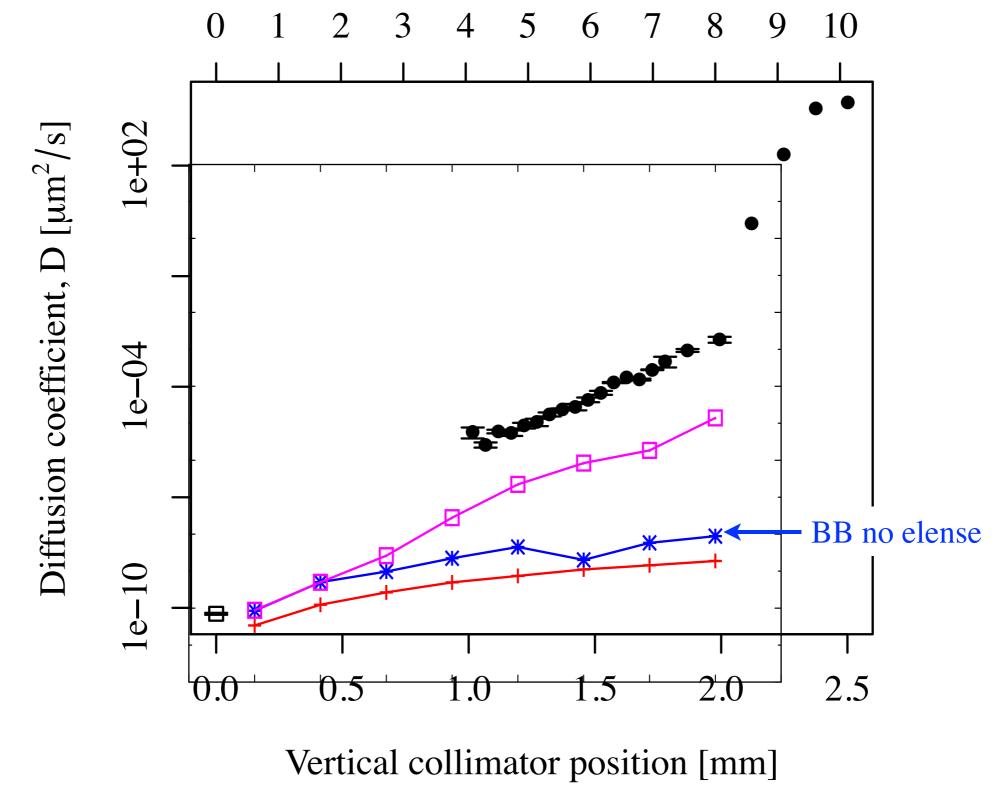


Vertical collimator position $[\sigma]$



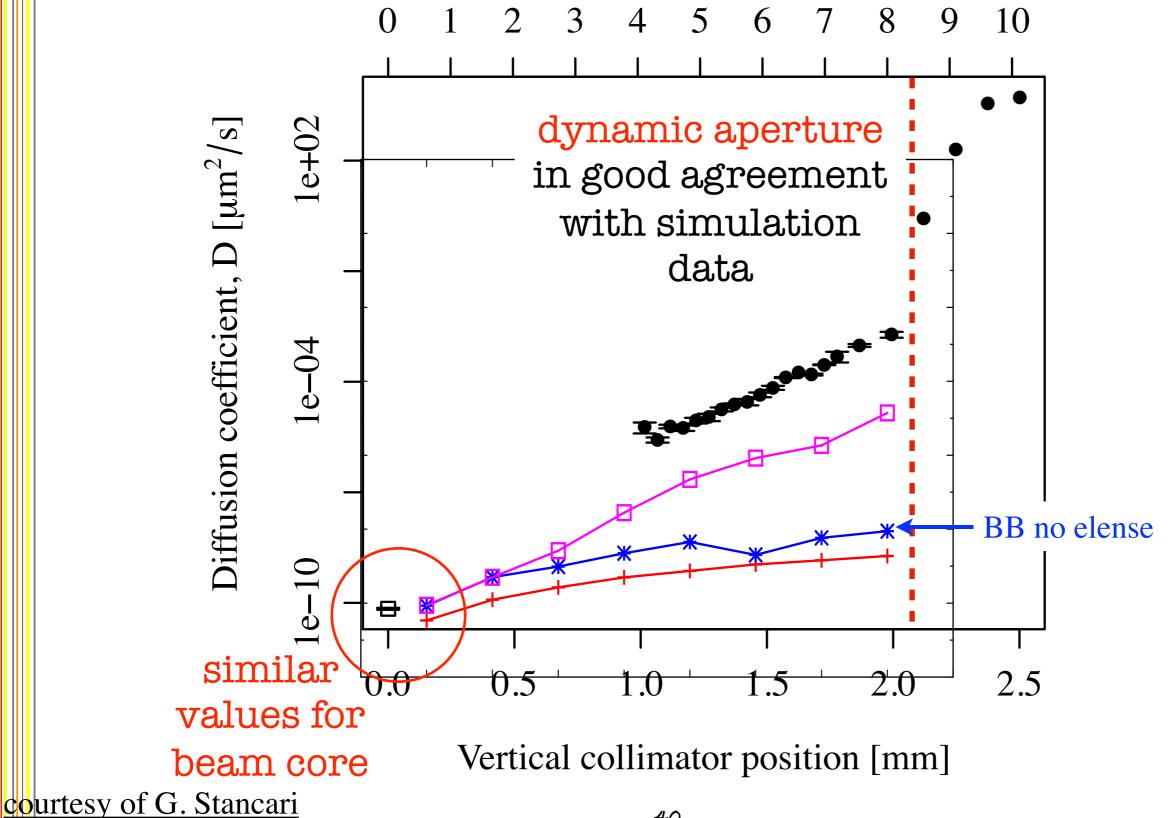
courtesy of G. Stancari

Vertical collimator position $[\sigma]$

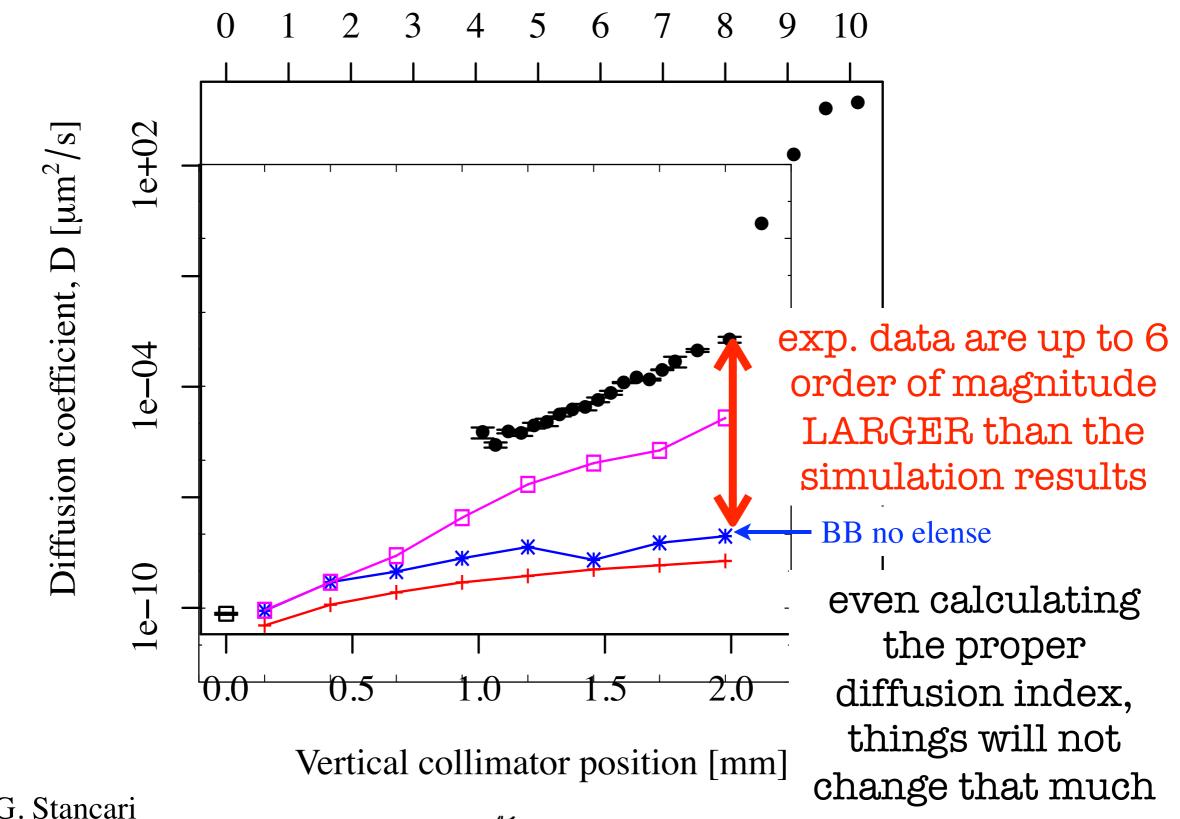


courtesy of G. Stancari

Vertical collimator position $[\sigma]$



Vertical collimator position $[\sigma]$

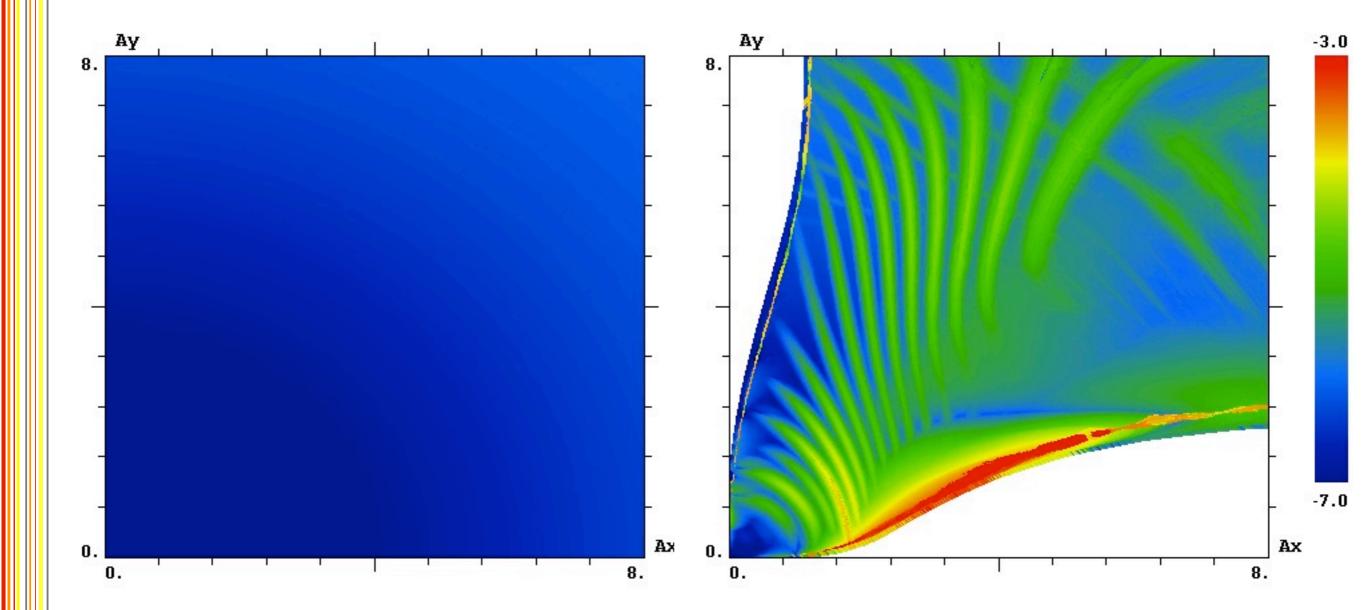


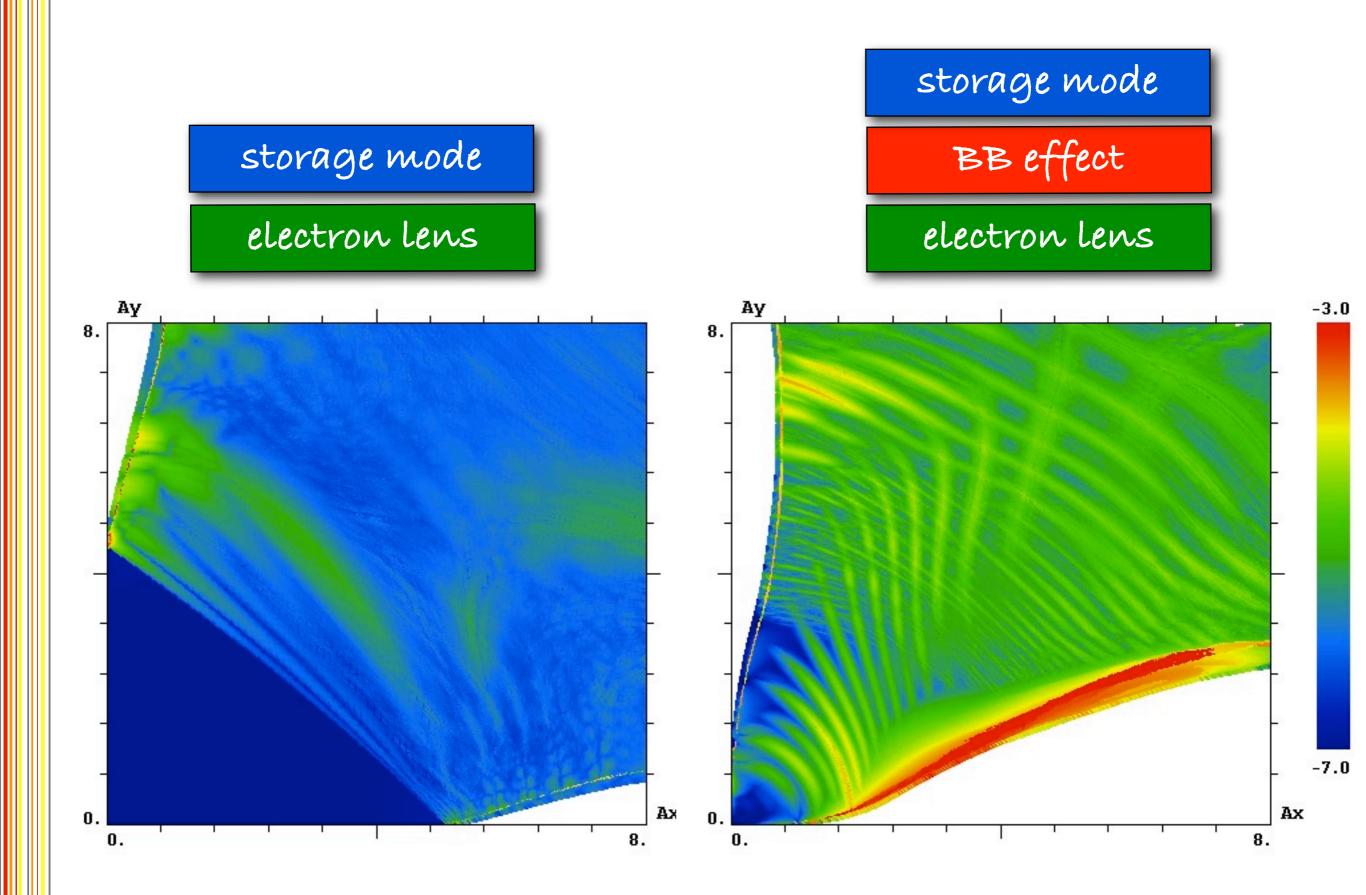
courtesy of G. Stancari

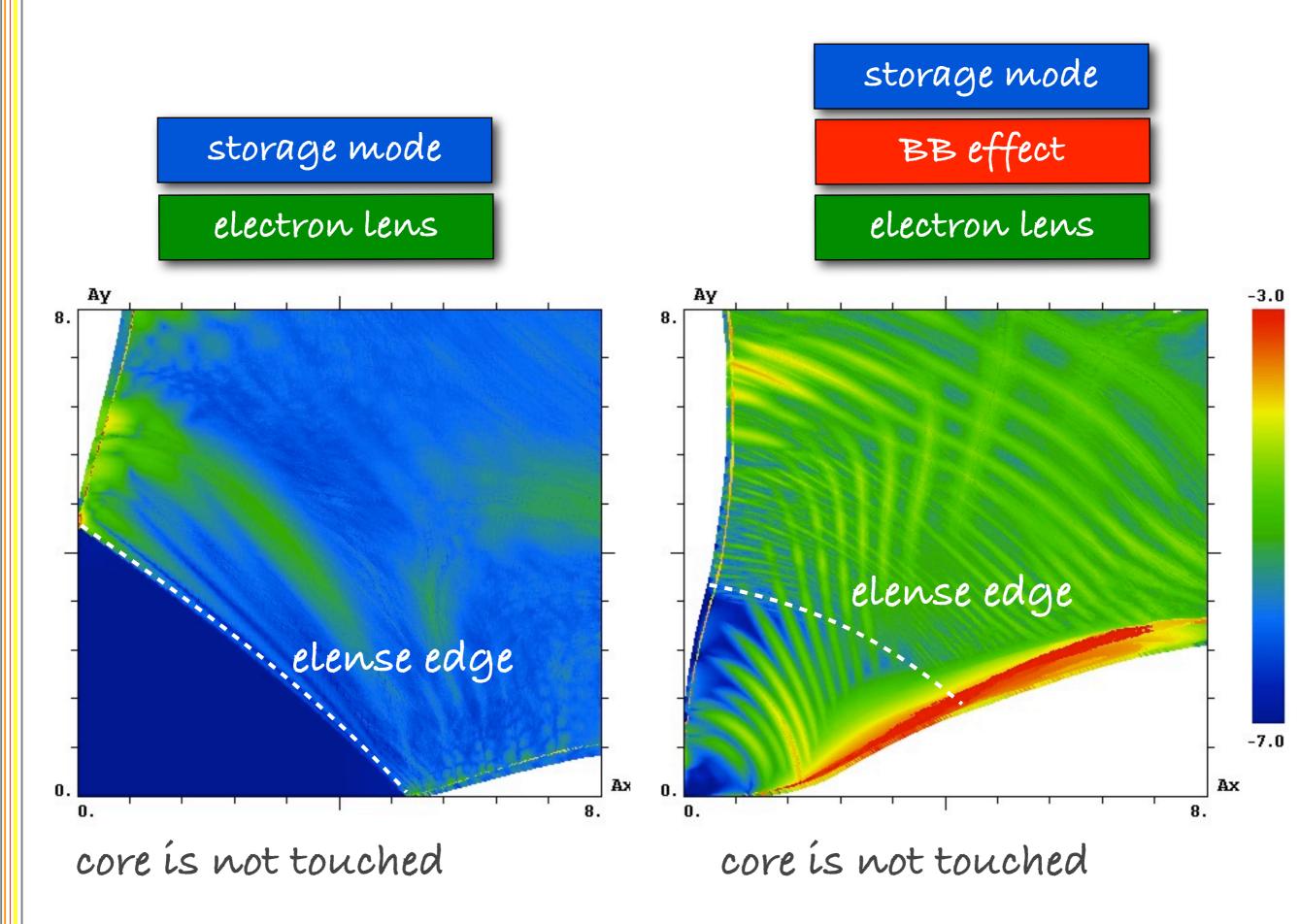
Shortcut N.2: Fma Plots

- FMA (frequency map analysis) measures the main betatron tune jitter in logarithmic scale (here presented in the average amplitude space)
- it shows the machine resonances
- the diffusion index i (tune jitter) is a qualitative measure of D_J/J unfortunately we do not know exact formula to relate the two...
- it allows us to have a qualitative, but global picture of the change in diffusion

storage mode







A Different Approach

- Simulate the experiment directly!
- Does not provide insights

Conclusions

- Diffusion coefficients have been calculated in the normalized planed for a sampling of the $\langle A_1 \rangle$, $\langle A_2 \rangle$ space
- As expected, in case of random noise, D_J/J is constant, about 5e-8 μ m/s
- With the BB case, a factor 2 to 10 in diffusion increase is estimated.
- Even with BB included, the diffusion coefficient n simulations is still many orders of magnitudes lower than the experimental one.
- Including a basic description of the electron lens, particles with amplitude larger than the inner electron lens radius diffuse with a much faster rate (10K x factor). The core is untouched.
- fma plots show a global picture of the diffusion index in the amplitude space, showing clearly the influence of elense.
- Different approaches are proposed.