NOvA: Accelerator Upgrades

Paul Derwent Fermilab Institutional Review June 6-9, 2011

Accelerator Upgrades for NOvA

- Increase power on v target to 700 kW
 - Slip Stacking in Recycler
 - 1.33 second cycle in Main Injector
 - Target station upgrades
 - v energy configuration
 - to handle increased power
- Element of NOvA Project: J. Cooper
 - 14 kton detector in Ash River MN
 - CD-3b Oct 2009
 - CD-4 Nov 2014

Operations for NuMI

- 11 batch injection into Main Injector & slip stacking
 - 10/₁₅ second to accumulate beam in MI
- Ramp to 120 GeV and extract
 - 1.533 seconds
 - 2 for pbar production ~8e12 70 kW
 - 9 to NuMI target ~3.5e13 305 kW
- 2.2 second cycle
 - 5 Hz demand on Booster

Main Injector Beam Performance to Pbar

Main Injector Beam Performance to NuMI

NOVA ANU

- Injection and Slip Stacking in Recycler Ring
 - Cut ²/₃ second for injection from cycle
 - 12 batches from Booster instead of 11
- Single turn transfer to MI
- Ramp to 120 GeV
 - Faster ramp: 1.333 second
 - All 12 to NOvA target: ~4.9e13 706 kW
- 1.333 second cycle
 - 9 Hz demand on Booster
 - 12 consecutive pulses
 - 1.4e17/hour
- Target Station:
 - New target design
 - New Horn configuration

NOvA ANU: Recycler

- Recycler Upgrades: from a pbar storage ring to a proton slip stacking ring
- MI 10, MI 20, MI 30 Decommission pbar cooling and transfer lines
 - 2 new transfer lines

MI 8 and MI 10

- Injection: Booster to RR
- Preserve Booster Neutrino Beam and MI capabilities

MI 30

Extraction: Recycler to MI

New fast kickers 12 vs 11 injected

57 nsec rise/fall

MI 10, MI 30, MI 40

- 5 different kicker systems
- New magnets
 - New/modified designs PDS MLAW
 - Existing Designs PDD RQN
- Refurbished Magnets ADCW

NOvA ANU: Magnet List

Туре	Comment	Total Required	From Tunnel	Available From Storage	Construct New	Modify Existing	Status
PDS	New SmCo5 style double dipole	2	0	0	2	0	DONE
PDD	PDD 8 GeV style double dipole, existing style	5	0	0	5	0	DONE
PDDW	PDD dipole design, reduced field	2	0	0	2	0	DONE
RQNx							In progress, most parts in hand
MGS							Need measurement
ADCW	Modified B1 style to open aperture	3	0	0	0	3	Almost Done (waiting on cooled beam pipe)
MLAW							Probably this fall
ILA	MI style Lambertson	1	1	0	0	0	
MQT	Old MR style quad trim	23	10	13	0	0	
HDC	Old MR style horizontal corrector used in Recycler	8	8	0	0	0	
VDC	Old MR style vertical corrector used in Recycler	9	9	0	0	0	
MCH	LEP Horizontal corrector	2	2	0	0	0	
MCV	LEP vertical corrector	2	2	0	0	0	

NOvA ANU: PDD Installation, March 2011

NOvA ANU: Recycler

Recycler Upgrades:

MI 60

- 53 MHz RF for Capture and Slip Stacking
 - New cavities, under construction
- Instrumentation Upgrades

. BPMs cabling and electronics for 53 MHz

. MultiWires in transfer lines

. DCCT for intensity measurements

everywhere MI 10 and MI 30

MI 60

NOvA ANU: Main Injector

To handle faster ramp:

MI 60

- - Cavities from existing MI spares
 - . New modulators, ferrite bias supplies, power amplifiers
- Power upgrades
 - New transformer for quad bus
 - . Move Tevatron Anode Power supply for RF

NOVA ANU: NuMI

Transfer Line:

Magnet & PS upgrades: faster cycle time

Instrumentation & Diagnostics: intensity

New Target Design Medium Energy position

- No motion
- Not constrained inside horn
- Lessons learned from NuMI targets have been applied to design
- IHEP design
- IHEP & STFC/RAL construction

NuMl Target hall

A1 line, MI50,

NuMI line

NuMl Target hall

Relocate Horn 2

- ~9 m downstream
- Utility upgrades

NOvA ANU: Target

NOvA ANU: Beryllium Window

- 135 mm dia X 1.25 mm thick
- PF-60 grade beryllium window.
- Diffusion bonding technique.
- Can withstand vacuum w/o beam and 3 psig with beam.
- IHEP to prototype, test, and build (3) windows
 - Prototype successful, 8.5 atm
- Brush-Wellman will build one window.

NOvA ANU: Resources

Project has priority and available resources for work

NOvA ANU: Shutdown

- Scheduled 11 month shutdown
 - Recycler and MI upgrades
 - NuMI Target Hall upgrades
 - . 1 Mar 2012 1 Feb 2013
- Working on coordination since September 2010
 - Balancing of time, traffic, and tasks
 - Radiation and ALARA
 - MI 30 is hot
 - NuMI Target Hall is hot
 - . Traffic: MI 60 is access point
 - Resources: people and equipment

NOvA ANU: Shutdown work

NOVA ANU: Shutdown scheduling

- Time: x axis (weeks)
- Location: y axis (vacuum sector)
- Color: crew
 - **AD** Installation
 - Electricians
 - Riggers
 - **Pipefitters**

NOvA ANU: Commissioning

- Plan under development
 - Hardware testing as part of installation
 - Beam Commissioning
 - Expect ~100 kW in weeks time frame
 - Anticipate ready with RR slip stacking and 1.33 second
 MI ramp in 6 months

NOvA Accelerator & NuMI Upgrades

- Plan to deliver 700 kW to NOvA target
 - Series of upgrades to:
 - Recycler
 - Main Injector
 - NuMl Target Hall
 - Resources in place to execute the plan
- CD-4 Requirement: Complex <u>capable</u> of delivering 700 kW
- On schedule for shutdown
 - 1 Mar 2012 1 Feb 2013

Backups

NuMI Target

- NOVA target water line is much further from target
 - Will very likely fail in some different manner

Water cooling pipe

Aluminum tube for helium containment

Helium

MINOS LE target

All units mm

Jim Hylen

- · water-cooled target must fit inside small radius of focusing horn
- intense beam; center of graphite ΔT = 270 °C each 9 μs pulse

Target life-time history

Design goal	12 months				
1 st target	16 months				
2 nd target	33 months				
3rd target	10 months				
4th target	< 1 month				
5 th target	4 months				

- -- Then modified target 6 (more robust weld and geometry) before putting it in beam

← Old design New design -

23

So, usual suspects

Weld sleeve ramic transitions

Water turn-around

Target cross section comparison

water cooling 8 times as far away, 0.1 x the water hammer

MINOS beam spot size of 1.1 mm RMS is increasing to 1.3 mm for NOVA,

increasing 6.4 mm target width to ~ 7.4 mm

- reduces the neutrino flux ~ 1%, but eases

alignment tolerance.

Spacing between fins 0.5 mm / 24 mm versus 0.2 mm / 20 mm

