Neutrino Interactions in the MINOS Near Detector

Debdatta Bhattacharya University of Pittsburgh

(for the MINOS Collaboration)

NUINT 07
Fermilab
May 30-Jun 3, 2007

Outline

- Introduction
- Near Detector readout.
- Calibration system and resolution.
- Data taking.
- Event Topologies.
- Charged Current Sample.
- Ongoing analysis
- Summary

Near Detector

- 1 km from target.
- 0.98 kTon.
- 3.8m × 4.8m ×16.6m.
- Magnetic Field → 1.2 T.

- Steel and scintillator tracking calorimeter.
- 1"Fe/1 cm scintillator.

Near Detector

282 steel planes, 153 scintillator planes.

- Calorimeter region
 - Planes 0-120.
 - Partial instrumentation every alternate plane.
- Spectrometer region
 - Planes 121-282.
 - Only full instrumentation every 5th plane.
 - Every 5th plane throughout the detector is fully instrumented.

Near Detector Readout

Near Detector Data

- ND sees large event rates in each 10 μ s spill.
 - 19 ns, deadtimeless sampling used to readout PMTs.
 - Events are separated using timing and topology.
 - No rate dependent reconstruction effects observed.

One near detector spill

MINOS Calibration System

- LED based light injection system
 - Calibrate PMTs.
- Cosmic Ray muons
 - Remove variations along and between strips.
- Stopping muons
 - Detector-to-detector relative energy calibration.
- Test beam with mini-MINOS detector (CALDET)
 - Measure absolute energy scales. (e, μ , π ,p).

Shower energy resolution

 $55\%/\sqrt{E}$ (single pion)

Muon momentum resolution

6% range, 13% curvature

Data Taking

- Three beam configurations are LE, ME, and HE.
- Beam Composition :
 - - $6.5\% \ ar{
 u}_{\mu}$
 - 1.5% $\nu_e + \bar{\nu}_e$

Event topologies

ν_{μ} charged-current

neutral-current

 ν_e charged-current

long muon track

- (no μ)
- diffuse shower,
 EM-like shower, (no μ)

Reconstructed Energy

$$E_{VIS} = p_{\mu} + E_{shw}$$

Sample Selection

- One good track
 - stopping = P_{range}
 - exiting = $P_{\text{curvature}}$
- Vertex in fiducial volume
 - Centered on beam spot.
- Sign of muon track (for selecting ν_{μ} CC and $\bar{\nu}_{\mu}$ CC)

- CC/NC discrimination(analysis dependent)
 - PID cut use variables like event length, fraction of event PH in track, track PH per plane.
 - Muon momentum Cut minimum muon energy requirement to discriminate Neutral Current.

Near Detector Samples

CC sample for 3×10^{20} protons on target (May 05-Apr 07)

5.5e+06 (fiducial mass 33 ton)

Ongoing Physics analysis

Quasi Elastic ν N scattering.

Low ν flux extraction.

Inclusive CC cross-section shape.

DIS and structure function.

Coherent Pion production.

*Some of the topics will be covered in more detail in other talks.

Quasi-Elastic Scattering

$$\nu + n \rightarrow \mu^- p$$

- Estimated sample size for 3×10^{20} protons on target 800,000 (fiducial mass 33 ton).
- The QEL-enhanced sample can be used
 - to extract the flux.
 - for M_A fitting.
- Look for a "well-defined" muon track with low E_{shw} /low W.
- Main background
 - Single pion interactions.
 - Difficult to isolate because of segmentation.

Total Cross-Section Shape

• Cross-section: $\sigma_{CC}(E) = \Phi(E)^{-1}(E)N_{CC}(E)f_{\mathsf{ACC}(E)}$

Energy dependence only: norm. to world average at high

energy.

- Measurements of σ/E in the low energy region have limited precision (\geq 10%).
- We expect to have lower systematics(\sim 5%). Main contribution
 - Muon and hadron energy scale.

Deep Inelastic Scattering

$$\frac{d^2 \sigma^{\nu(\overline{\nu})}}{dx dy} = \frac{G_F^2 M E}{\pi} \left(\left[1 - y(1 + \frac{Mx}{2E}) + \frac{y^2}{2} \frac{1 + (\frac{2Mx}{Q})^2}{1 + R_L} \right] F_2(x, Q^2) \pm \left[y - \frac{y^2}{2} \right] x F_3(x, Q^2) \right)$$

DIS is the largest contribution to the MINOS event sample.

- The statistics for the CC DIS sample (for a total of $7.4*10^{20}$ protons on target)
 - ν sample $2.6*10^6$ (NUTEV/CCFR $1.0*10^6$)
 - $\bar{\nu}$ sample $\boxed{0.3*10^6}$ (NUTEV- $0.3*10^6$,CCFR $0.8*10^6$)
- The measurement will be systematics limited.

NC Coherent π^0 Production

- Neugen3 predicts 17,000 events for 3×10^{20} protons on target (fiducial mass 33 ton).
- ν_{μ} + A $\rightarrow \nu_{\mu}$ + A + π^{0} (First NC measurement on a heavy target).
- Main backgrounds
 - other NC events.
 - ho CC ν_e
- Analysis also important for understanding ν_e appearance background.

MINOS MC NC Coherent Event

Prospects of CC Coherent Analysis

- Neugen3 predicts 27,000 events for 3×10^{20} protons on target (fiducial mass 33 ton).
- ν_{μ} + A $\to \mu^{-}$ + A + π^{+} .
- Main background
 - Other CC events with low shower energy.
- High statistics
 - But reconstruction and selection will be a challenge because of segmentation
- Dominant uncertainty will be most likely from background contamination subtraction.

Summary

- Intense NUMI beam and high interaction rate offer oppurtunities for exploring cross-sections at low energy and rare channels.
- Some analyses underway
 - Flux extraction.
 - Total ν_{μ} CC and $\bar{\nu}_{\mu}$ CC cross-section shape extraction.
 - QEL parameters.
 - Stay tuned for results.
- Also ongoing
 - DIS differential cross-section extraction.
 - Structure Function extraction.
 - Coherent production cross-section.

BACKUP SLIDES

Near Detector Data

slice 1, slice 4, slice 5

slice 2, slice3

Special Runs

- ND reversed field runs, taking reversed field for 1 week, followed by a week of normal field, etc, up to a month of accumulated reverse ND field data. Weeks are alternated so as to keep tabs on detector stability using standard configuration data.
- High Energy Runs These Runs were recorded between Jun 11, 2006 and Aug 13, 2006. In that run period, NuMI recorded 15.97 x E18 POT.
- Medium-High Energy Runs These Runs were recorded between Jun 1, 2006 and Jun 11, 2006. In that run period, NuMI recorded 1.86 x E18 POT.

CC/NC Classification

CC-like and NC-like probability variables (P_{CC} and P_{NC}) are constructed from the product of the 3 PDFs for each event.

Event Classification Parameter

$$-(\sqrt{-logP_{CC}} - \sqrt{-logP_{NC}})$$

Quasi-Elastic Flux Extraction

Details of the qel display

true P_{μ} = 2.1 GeV/c,proton = 0.7 GeV/c muon travels another 3 m and bends to the centre of the detector.

effi ciency 90% high purity 70%(Ehad=0) moderate purity 60%(low Ehad) modest purity 45%(two tracks)

- σ_{QEL} reasonably well constrained and flat with energy.
 - Select QEL enriched sample between 0.5 and 30 GeV \rightarrow flux shape.
- Inclusive σ_{CC} is well known above 30 GeV on iron
 - Inclusive CC sample 10-30 GeV flux normalization.

Low ν **Flux Measurement**

Start with the differential cross section equation, integrate over x for fixed ν

$$\frac{d\sigma}{d\nu} = A(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2})$$

cross section equation , integrate over x for fixed
$$\nu$$

$$\frac{d\sigma}{d\nu} = A(1 + \frac{B}{A}\frac{\nu}{E} - \frac{C}{A}\frac{\nu^2}{2E^2})$$

$$A = \frac{G_F^2M}{\pi}\int F_2(x)dx$$

$$B = -\frac{G_F^2M}{\pi}\int (F_2(x) \mp xF_3(x))dx$$

$$C = B - \frac{G_F^2M}{\pi}\int F_2(x)(\frac{1 + 2Mx/\nu}{1 + R} - \frac{Mx}{\nu} - 1)dx$$

- by: $\Phi(E_{
 u}) \propto N(E_{
 u})_{(
 u
 ightarrow 0)}$
- Use the total cross-section to get the flux normalization.

Event Selection

$$p_{\mu} >$$
 2 GeV

$$E_{
m shw} < 1~{
m GeV}~{
m for}~E_{
u} < 10~{
m GeV}$$

$$E_{
m shw} < 2~{
m GeV}$$
 for $10 < E_{
u} < 50~{
m GeV}$

Flux will be used for

tuning MC

extracting the total cross-section shape

DIS analysis

Flux Measurement

- Event Selection $p_{\mu} > 2$ GeV. Flux sample is selected by
 - $E_{\rm shw} < 1$ GeV for $E_{
 u} < 10$ Gev.
 - $E_{\rm shw} < 2$ GeV for $10 < E_{\nu} < 50$ GeV.
- Acceptance correction applied from Monte Carlo.
- Cross-section model used to apply corrections to the low ν sample.

Systematics from the B/A correction

- Bands computed from physical limits
 - Neutrino: -0.24<B/A<0</p>
 - Antineutrino:

-2.0<B/A<-1.7

Fractional Contamination

Total Cross-Section Shape

- Cross-section: $\sigma_{CC}(E) = \Phi(E)^{-1}(E)N_{CC}(E)f_{\mathsf{ACC}(E)}$
 - Energy dependence only: norm. to world average at high energy.
- Event Selection : $p_{\mu} >$ 2 GeV, separate by muon charge.
- ullet Purity: $u_{\mu} > 99.4\%$, $uarray{}_{\mu} > 92\%$.