
Christopher Jones
LArSoft 2017 Workshop
20 June 2017

Introduction to Multi-Threading

20/06/2017 C Jones | Introduction to Multi-threading

Overview

Who am I?

What is multi-threading?

Why use multi-threading

Multi-threading difficulties

Thread safety

Things to avoid

2

20/06/2017 C Jones | Introduction to Multi-threading

Who am I?

I’m in charge of the CMS event processing framework
art was derived from an earlier version of the CMS framework

I lead CMSes effort to switch to a multi-threaded framework
I designed the how the CMS framework uses threads
I lead the team that changed the framework
I implemented a large portion of the conversion
I provided instructions to the CMS developers on how to adapt their code

This talk is based on that 6 years of experience

3

20/06/2017 C Jones | Introduction to Multi-threading

What is Multi-threading?

A thread is the smallest unit of sequential processing
Each thread has its own call stack

Have own function local variables
Have own function callback stack

All threads in a process share the same memory address space
If a thread changes a value in memory it affects other threads using the memory

Contrast: multiple processes do not share the same memory address space
If a process changes a memory address it can NOT affect other processes

4

20/06/2017 C Jones | Introduction to Multi-threading

Why Use Multi-threading

Speed

Shared Resources

5

20/06/2017 C Jones | Introduction to Multi-threading

Speed

Using multiple threads can make processing one event faster
There is always some point where threads are waiting for the last thread to complete

Multi-threading does not decrease the time to process ALL events
Running multiple single-threaded jobs each processing events is usually faster
Many single-threaded jobs are usually the most CPU efficient

Why bother with multi-threading?

6

20/06/2017 C Jones | Introduction to Multi-threading

Computing Hardware Trends

CPU frequencies no longer increase

Manufacturers are increasing number of CPU cores

Cost of memory decrease at a slower rate than increase core count
Memory per Core is either flat or decreasing

Intel Xeon we can afford 2 GB/core

Intel Xeon Phi have 256 ‘cores’ but only afford 96GB total
If single threaded job takes 1.5 GB could only run 64 jobs on the machine
Would take 4x as many computers to use single-threading compared to multi-threading

7

20/06/2017 C Jones | Introduction to Multi-threading

Shared Resources

Multi-threaded programs can share memory across many events
E.g. Geometry, Conditions, Configuration
CMS: 1.5GB can be shared and each event needs 0.2 to 0.5 GB

Multi-threading help Batch and Workflow management systems scale
Do not have to have a batch slot per core
Systems only grow as the number of machines, not number of cores

Multi-threading puts less pressure on computing sites
Database connections are shared across cores
File opens can be shared across cores

8

20/06/2017 C Jones | Introduction to Multi-threading

Multi-threading Difficulties

Race condition

Deadlock

9

20/06/2017 C Jones | Introduction to Multi-threading

Race Condition

A shared memory address where
One thread is writing to the memory
Another thread is reading or writing to the memory

There is no such thing as a ‘benign’ race condition

10

Date Presenter I Presentation Title

Double-click to edit Double-click to edit

Thread 2
values.push_back(2.);
for(auto v:values) cout <<v;

Race Condition Example

11

Thread 1
values.push_back(1.);
for(auto v:values) cout <<v;

std::vector<double> values;

Results could be
1.0 1.0 2.0
2.0 2.0 1.0
1.0 2.0
2.0 1.0
segmentation violation

Date Presenter I Presentation Title

Double-click to edit

12

CPU Memory Model

CPU0
R0 R1 Rn…

L1

L2

CPU1
R0 R1 Rn…

L1

L2

CPU2
R0 R1 Rn…

L1

L2

CPU3
R0 R1 Rn…

L1

L2

L3

Main Memory

20/06/2017 C Jones | Introduction to Multi-threading

Race Condition Example

std::vector<bool> bools={false,false};

13

Thread 2
bools[1] = true;
cout <<“ 1 “<<bools[1];

Thread 1
bools[0] = true;
cout <<“ 0 ”<<bools[0];

Results could be
‘0 true’ and ‘1 true’
‘0 false’ and ‘1 true’
‘0 true’ and ‘1 false’

20/06/2017 C Jones | Introduction to Multi-threading

Deadlock

A deadlock is when two or more threads are waiting for other threads in the
group to finish before continuing.

14

Thread 2
acquireCalibration();
acquireGeometry();
…
releaseGeometry();
releaseCalibration();

Thread 1
acquireGeometry();
acquireCalibration();
…
releaseCalibration();
releaseGeometry();

20/06/2017 C Jones | Introduction to Multi-threading

Thread Safety

The easiest way to be thread safe is to never have a thread write to memory
that another thread will read.

For all other cases, C++ requires the use of synchronization mechanism
E.g. mutex, semaphore, atomic
These will not be covered in this talk
art will automatically handle synchronization across modules

An object put into the Event by a module can safely be read by a module in another thread

15

20/06/2017 C Jones | Introduction to Multi-threading

Levels of Thread Safety for Objects

Thread-hostile

Thread friendly

const-thread safe

Thread safe

16

20/06/2017 C Jones | Introduction to Multi-threading

Thread Hostile

It is not safe for more than one thread at a time to call methods even for
different class instances

E.g. with static

17

class Foo {
public:
 int convert(int iIn) const {
 static int s_oldIn{iIn};
 static int s_cache{ calculate(iIn) };
 if(iIn != s_oldIn) { s_cache = calculate(iIn);
 s_oldIn = iIn; }
 return s_cache;
 }
 …
};

20/06/2017 C Jones | Introduction to Multi-threading

Thread Friendly

Different class instances can be used by different threads safely
Sharing the same instance across multiple threads is not safe

E.g. with mutable cache

18

class Foo {
 mutable int cache_;
 mutable int oldIn_;
public:
 int convert(int iIn) const {
 if(iIn != oldIn_) { cache_ = calculate(iIn);
 oldIn_ = iIn; }
 return cache_;
 }
 …
};

20/06/2017 C Jones | Introduction to Multi-threading

const Thread-Safe

Multiple threads can call const methods on the same class instance
Classes in the C++ standard library are const thread-safe

Classes put into the art::Event must be const thread-safe

19

class Foo {
 std::vector<int> values_;
public:
 Foo() : values_{calculateAllAllowedValues()} {}

 int convert(int iIn) const {
 return values_[iIn];
 }
 …
};

20/06/2017 C Jones | Introduction to Multi-threading

Thread Safe

Multiple threads can call non-const methods on the same class instance

Intel’s Thread Building Block library has thread-safe containers
tbb::concurrent_vector, tbb::concurrent_hash_map, etc.
TBB is distributed with art

20

Thread 1
tbb::concurrent_vector<double> values;
startAndWaitForOtherThreadsToFinish(values);
for(auto v:values) { cout << v<<“ “; }

Thread 3
values.push_back(2.);

Thread 2
values.push_back(1.);

Results could be
1.0 2.0
2.0 1.0

20/06/2017 C Jones | Introduction to Multi-threading

Things to Avoid

non-const global memory

mutable data members in Event data products

art based Services with mutable state

Starting your own threads

21

20/06/2017 C Jones | Introduction to Multi-threading

Avoid: Non-const Global Memory

Global Memory: memory accessible from global C++ scope

Types of global memory
File scope variables
Function static variables
Class static variables

No way to know if another thread is changing the values

22

20/06/2017 C Jones | Introduction to Multi-threading

Avoid: Mutable Data Members in Event Data Products

Event data products are shared across threads
Multiple threads can be calling const functions on the same class instance

23

class Displacement {
 Cartesian3D vec_;
 mutable Polar3D polar_;
 mutable bool polarIsSet_;
public:
 Polar3D const& polar() const {
 if(not polarIsSet_) { polarIsSet_ = true;
 polar_ = calculatePolar(); }
 return polar_;
 }
 …
};

20/06/2017 C Jones | Introduction to Multi-threading

Avoid: Services with Mutable State

Services are shared across threads
NOTE: storing event data in a Service is not considered best practice in art

24

class TrackFittingService {
 std::vector<Hit> hits_;
public:
 void setHits(std::vector<Hit> const& iHits) {
 hits_ = iHits; }
 Track fitToTrack() const;
 …
};

20/06/2017 C Jones | Introduction to Multi-threading

Avoid: Starting a Thread

Grid sites specify how many threads a process can use

art will start with the maximum allowed number of threads

Additional high CPU threads can lead to a site killing the process

art will provide facilities to allow you to do work concurrently within a module
Calling TBB parallel algorithms within an art module is supported
To start TBB add to configuration: services.num_threads: <n>

25

20/06/2017 C Jones | Introduction to Multi-threading

Conclusion

Multi-threading is coming to art

This will allow HEP processes to run on resource constrained systems

Need to prepare code now
Remove use of ‘global’ variables
Do not use mutable member data for Event data products
Remove mutable state from Services

26

20/06/2017 C Jones | Introduction to Multi-threading

Advanced Resources

Useful book about C++ concurrency
“C++ Concurrency in Action” by Anthony Williams

Useful talk about C++ threading memory model
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-
atomic-Weapons-1-of-2

27

https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2

