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Activities & a cknowlegments to people involved

1) Booster Collimator Hardware & Control (motion tests):
Charles Briegel, Salah Chaurize, Mike Coburn,
Vladimir Sidorov, Matt Slabaugh, Todd Sullivan,

Rick Tesarek

2) Support for Beam Dynamics Simulations:
Valeri Lebedev, Nikolai Mokhov,
Igor Rakhno, Sergei Striganov, Igor Tropin

3) Support for task managments:
Bill Pellico and Cheng-Yang Tan

2= Fermilab



2-stage collimation system of FNAL booster

Two stage collimation system for booster designed and installed in 2004.

Instead 0.381 mm copper foil was installed

GxSB: Booster BLMs
L 1 Mt w F:' h (el 7 . |':1 E + 1 t-' @d,27-04 1146

Collimators Inserted 2005 Pellico & Sullivan
Booster Collimation

e Cffects of  DOE-Review

T T T T T

Two-stage collimation was tested but is not
used in operations (variable beam size and
position due to e.g. “momentum cogging”)

March 29 - 31, 2005 DOE Review of Tevatron Operations at FNAL 10
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Principle scheme of 2-stage collimation system

Collimation system must redistribute losses to dedicated “secondary” collimators
Usual “1-stage” collimation produces uncontrolled out-scattered protons =>

“2-stage” scheme

Bryant, in CETJ\I AS;SChO‘)l (1992), P-174 116 primary collimator is followed by

N cuers two secondary collimators set at
- optimized phases for intercepting the
scattered particles.

(a)

. Simulations steps (as with STRUCT):

Shaddw of

/ primary % (Generate part. distribution on edge of

Paél:s scattered collimator

@ inwards (4 Prim-Collimator (halo-patrticles)

Particies i ssScattering in material of thin P-Coll
escaping dXsdp N . .
system % **(Non-linear) Tracking scattered parts
g s+Collect lost particles on Sec-Colls and
other magnet apertures
."Shadows of primary

* and secondary collimators

i 11 Main features of a collimation syste halo particles => large amplitudes =>
. ain features oI a collimation sysiem . .
& d Correct treatment non-linear dynamics => ~MADX
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Collimator placements in booster

Horizontal Primary Vertical Primary 1 1
Collimator Collimator 3 Milorad Popovic, Beam-Docs-3347-v1
] Short 3 j Long 6 Short 6 Long 7
Secondary Secondary
Collimator Collimator

Figure 1. Blue boxes represent the main magnets; collimators are represented by brown boxes.
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Collimation system transverse layouts by A.Drozhdin

Table. from Ref.1 "pa
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Task started in 2014: optimal thickness of primary coll.

« MADX code has been modified to include proton interactions with thin
primary collimators (Prim-Colls), while out-scattering from secondary
collimators is neglected

« Dependence of collimation efficiency on thickness of Cu Prim-Colls at
injection energy (400MeV) within thickness range
{0; 381um} has been simulated. It is quite smooth.

« Collimation efficiency grows up with the number of turns  (simulated up to
100) under simulation approach that all accelerator parameters are
constant (is it a case of booster ?)

* Optimal thickness of Prim-Colls for Cu is ~50um (or thinner) to reduce
losses of scattered protons in magnet apertures and pipes between
primary and secondary collimators.

e ~50 mkm is much less of existing 381 um (0.015") Cu foil for both hor.
and vert. primaries

* Original STRUCT's calculations at 400 MeV corresponds to equivalent Cu
foils of ~12um
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MADX (w/o out-scattering): horizontal collimation f or 2004-design

10000 |mmcm=N total —=#=~N_colls_sum 1
After 10 turns
8000 ZS 0.8
=== Colls_part
6000 0.6
oo 04
2000 0.2
0 0
0 50 100 150 200 250 300 350 t_mkm 400
Maximum N_colls_sum at 50um (within 30-60um)
a¢ Fermilab
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Primary thickness for ~2004 “STRUCT” design & Equiv. materials

20150804_equiv_materials_reduced_to_ Al

——O——d_mkm T T T T o vttt vt ]
. present foil: \l -
2500 | [STRUCT 400MeV: | d(cu)=381pm L
d(W)=3um or (equiv. d(AI)=2_3mm)J o A E
d(Graphite)=150um _-l 153
2000 | { (equiv. d(AD=76pm) e 17,
_--f / joF
1500 [new Aug2015 foil: ] SPTa / 1
dAD=381um .-l STRUCT 8GeV: :
1000 R s d(W)=100pm or —
- - d(Graphite)=5.5mm ]
k= -7 (eqivv. d(AD=2_5mm) -
500 = Vot |
& Lo others at 4A00MeV: -
- d(Fe)=15um; d(Ti)= 30pum); 1
V“- [d(Si)— 80::[["[’]; d(Be)= 352pm] Wkin’ GeV i
o) 1 2 3 4 5 6 7 8
RMS scattering angle
13.6 MeV
0o = 3 21/ Xo {1 + 0.038111(:1?/)(0)} x[g/cmZJ :p[g/cm3jm[cm]
Bep
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New aluminium Prim-Colls

2005: Cu primary heat sink with
signal cable (+ceramic ins.)

6.0" — ~— 0.390"

0.5"1 0.5"1 0.5"

~—— 15" ——

5.0° —-‘ -~ 0.015"

0.5"

Oct.2015 New simplified primary assembly (just Al plate without any ceramic insulators):

R.J. Tesarek et al, Beams-Doc-5983, November 4, 2015. ANSYS

R15.0
From abstract: ... a candidate

primary collimator design of a
uniform aluminum foil with a
uniform thickness of 381 um.
... the steady state
temperature of the collimator
under nominal

beam conditions to be at or
below 140 C (absorb <4.6W).

TEMP=133.214

TEMP=140.306
Aver.deposited beam power is reduced 30 times
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Sec. collimators motion: reliability (courtesy R

i

absorber

Motion Reliability Tests:
* Move absorber multiple times
* Check that device moved correctly

= Found collimators move more reliably at
slower speed.

v Updated program to move all absorbers at
"reliable” speed.

v 4mil/s (H) 9 mil/s(V) (C.Briegel)

Needs further study (summer shutdown)
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Sec. collimators motion:

Program Corrects for Backlash:
* Correction observed too small
* Data to make new correction
* Confirm correction
= 6B found to be "slipping”
= Can correct to 0.020" (ne

better)
Additional studies needed next
shutdown
Collimator Bncklas.h
Correction
6A +0.020"
6B Slipping
7 +0.043"
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New simulations: upgraded model

»General idea by V.Lebedev & N.Mokhov
» A new simulation approach including out-scattering
in Sec-Colls is under development for a correct comparison
of two-stage and one-stage collimation in the booster.
»The proton interactions with Sec-Colls are simulated by
MARS (Mokhov's group) and used by MADX tracker
as black-boxes.

» Calulations for different collimator layouts (2004-design;
2011 Drozhdin “real” configuration; and find optimal one)
» Plans: simulations for different beam sigma and halo sizes

» Optional: Optimizations for existing single-stage scheme

2= Fermilab
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New simulations: Mars model for booster secondary c ollimators

The model of sec. collimator was created by I. Tropin & I.Rakhno.
Interface with “STRUCT” coordinate system (x,x’,y,Y’,p)

e

cm cm
10- -20-

-10-

47.90" (1.217 m)

0-

e R SR
S| 0-
PR -

AN SRR AN
T
DY DY \ﬂ
\ t

10-

R
N
R \\ [
v vz =1:3.042e+00

1,
s i
Tk xy = 1:1.000e+00 m 20- ‘ ‘ Jem

'10’ I I I
0 40 80 120
RN = -6.500 0 6.500

One model for 3 identical sec-colls. Model is centered on ref. orbit.
Transverse shifts simulated via shift of input and output particle coordinates

Steps: a) MADX multiturn tracking; b) protons lost on collimators collected at
collimator fronts; c) that protons are re-tracked throughout sec-colls with MARS;
d) Out-scattered protons are collected at sec-coll ends are tracked again by MADX
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Example of 1 stage horizontal collimation on COL1

12000 B Losses prim.beam
1 . — T T T T T T T
B final_losses Tracing from front of COL.1 1
10000 (Hprim=off) with MADX+MARS: ]
8000 ) ) a) MADX - 100% lost;
Collimation b) MARS - 43% outsc., then
6000 efficiency 75.5% c) MADX - tracking 10 turns
halo ~100um
4000 i
2000 i
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START1 = = Lrlng
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Example of 1 stage vertical collimation on COL2

12000 B Losses prim.beam

I final_losses ‘ ‘ | ‘ ]
10000 Collimation S
efficiency 48.7% |

8000 Tracing from front of COLZ2
(Vprim=off) with MADX+MARS: .
6000 |- a) MADX - 100% lost;
b) MARS - 51% outsc., then N
4000 Iy MADX - tracking 10 turns )
halo ~100um i

2000
o . . . | i
v 5 o S =i o = o . o
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Efficiency(%) of 1 stage collimation vs sigma & halo -width

Horizontal collimation on COL1 Vertical collimation on COL2

(Convergent beam envelope)

(Divergent beam envelope)

3sigma | 4sigma 3sigma | 4sigma
10um 69.86 65.13 10um 24.14 21.18
100um 75.48 76.40 100um 48.71 46.05
1000um 81.93 81.61 1000um 68.04 67.45

1-stage collimation dependence on:

» Twiss alpha — higher absorption for convergent beam
» higher beam halo width => higher impact parameter
»Beam sigma is not critical within 3-4 for booster

Efficiency in range 25-80%; Possible optimization by yaw & pitch angles
a¢ Fermilab
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Loss distributions with present 381um Cu foil ( 10turns)

losses_at_elements_381um_10turns
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Loss distributions with present 381um Cu foil ( 100turns)
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Losses on collimators redistributed
with outscattering (381um Cu foil)

5000 Iosses at elements 38'1um 100turns

' 7 ] I I I I

Re-tracing through Colls 1-3 I I I I
with MADX+-MARS outsc_col1
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Loss distributions with new 381um Al “50um Cu” foil (10turns)
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Loss distributions with new Al “50um Cu” foil ( 100turns)
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Losses on collimators redistributed
with outscattering (new Al 381um foil)

losses_at_elements_S50um_100turns
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Efficiency(%) of 2 stage collimation vs sigma & halo -width & turns

24

Horizontal collimation with new Al “50um Cu” foil at 10/100 turns

3sigma 4sigma
halo % of injected % of lost % of injected % of lost
10um 48 / 63 66 / 65 41 /55 59 /57
100um 48 [ 64 66 / 65 42 [ 57 59 /58
1000um 51/65 67 /65 44 [ 58 60 /58

2-stage collimation dependence on:

» Efficiency <coll.loss>/<total losses> ~ const vs N_turns
» Efficiency <coll.loss>/<injected> increases with N_turns
» Efficiency decreases for larger beam sigma

»Weak dependency of halo width (?)

2= Fermilab
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Plans for near future

e Matt made drawings for new Al foil and its “fork ” holder:
fabricated and ready for alignment measurements and

installation of both(?) primaries in vacuum (a future >8hrs shutdown)
*“Easy” replacement of prim. plate (Al: 0.015”->0.005” -> ? mm-Be)
eBeam tests could be started afterwards (~“Dec. 2015)

eSimulations plans (see above) include comparison with 1-stage colls
e Due to many concerns (collimation in synchrotron, not
storage/collider ring) : review of collimation systems on

similar proton synchrotrons (J-PARC, SNS, ISIS, ?) to work out
possible alternative solutions, if present booster two-stage
collimations is failing.

eConsidering alternative collimations schemes

(e.g. a’la “septum” suggested by V.Lebedev)

2= Fermilab
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Supporting slide
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Sec. collimators motion: 6B Horizontal motion

6B-H: Same program as previous slides:
* Move 0.090" steps toward aisle for ~0.45" total (OK)
= Attempted move 0.180" steps toward wall (failed)
* Moved 0.020" steps toward wall back to original
position
* Time sequence indicated by arrows
= Jump in ACNET data at direction change

= Slope different for different directions

27 V. Kapin | Booster collimation system

:

6B-H

LVDT (mil)
L] I T T

1200

1000+ = —-% r_,.-f i
= |u".':'-,"i:r‘r'—.-:|'|-l i £

800 7K

600 ie 52

{LANE | | o | { e | I 11 1 I 111 I 11 1 I { il L | I 1 1 1
0 200 400 600 800 1000 1200 1400 1600
Position (steps)

2= Fermilab

11/23/2015



