Proton decay search with LAr

Vitaly A. Kudryavtsev University of Sheffield

based primarily on the LAGUNA-LBNO and LBNE studies

First simulations

Model	Ref.	Modes	τ_N (years)
Minimal SU(5)	Georgi, Glashow [2]	$p \rightarrow e^+ \pi^0$	$10^{30} - 10^{31}$
Minimal SUSY SU(5)	Dimopoulos, Georgi [11], Sakai [12]	$p \rightarrow \bar{\nu} K^+$	
	Lifetime Calculations: Hisano,	$n \rightarrow \bar{\nu} K^0$	$10^{28} - 10^{34}$
	Murayama, Yanagida [13]		
SUGRA SU(5)	Nath, Arnowitt [14, 15]	$p \rightarrow \bar{\nu} K^+$	$10^{32} - 10^{34}$
SUSY SO(10)	Shafi, Tavartkiladze [16]	$p \rightarrow \bar{\nu} K^+$	
with anomalous		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{35}$
flavor U(1)		$p \rightarrow \mu^+ K^0$	
SUSY SO(10)	Lucas, Raby [17], Pati [18]	$p \rightarrow \bar{\nu} K^+$	$10^{33} - 10^{34}$
MSSM (std. $d = 5$)		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{33}$
SUSY SO(10)	Pati [18]	$p \rightarrow \bar{\nu} K^+$	$10^{33} - 10^{34}$
ESSM (std. $d = 5$)			$\lesssim 10^{35}$
SUSY SO(10)/ $G(224)$	Babu, Pati, Wilczek [19–21],	$p \rightarrow \bar{\nu} K^+$	$\lesssim 2 \cdot 10^{34}$
MSSM or ESSM	Pati [18]	$p \rightarrow \mu^+ K^0$	
(new $d = 5$)		B	$\sim (1 - 50)\%$
SUSY SU(5) or $SO(10)$	Pati [18]	$p \rightarrow e^+ \pi^0$	$\sim 10^{34.9 \pm 1}$
MSSM $(d = 6)$			
Flipped SU(5) in CMSSM	Ellis, Nanopoulos and Wlaker [22]	$p \rightarrow e/\mu^+ \pi^0$	$10^{35} - 10^{36}$
Split SU(5) SUSY	Arkani-Hamed, et. al. [23]	$p \rightarrow e^+ \pi^0$	$10^{35} - 10^{37}$
Minimal non-SUSY SU(5)	Dorsner, Perez [24]	$p \rightarrow \nu + (K^+, \pi^+, \rho^+)$	$10^{31} - 10^{38}$
		$n \rightarrow \nu + (\pi^0, \rho^0, \eta^0, \omega^0, K^0)$	
SU(5) in 5 dimensions	Hebecker, March-Russell [25]	$p \rightarrow \mu^+ K^0$	$10^{34} - 10^{35}$
		$p \rightarrow e^+ \pi^0$	
SU(5) in 5 dimensions	Alciati et. al. [26]	$p \rightarrow \bar{\nu}K^+$	$10^{36} - 10^{39}$
option II			
GUT-like models from	Klebanov, Witten [27]	$p \rightarrow e^+ \pi^0$	$\sim 10^{36}$
Type IIA string			
with D6-branes			

First simulations for LAr Bueno et al. JHEP04 (2007) 041. Also in Autiero et al. JCAP11 (2007) 011.

•

• The most promising mode

 $p \rightarrow K^{*} \overline{v}$

- Advantage over water Cherenkov

 high efficiency.
- In general, better event reconstruction and PID in LAr.

Events with kaons

• Event simulation from Bueno et al. JHEP04 (2007) 041.

ELBNF meeting, Fermilab, 22-23 January 2015

• ICARUS T600 event from Antonello et al. Adv. High Energy Phys. (2013) 260820.

First simulations

	Channel	Cut	Total background τ/B limit (years)		τ /B limit (years)
		efficiency (%) per year in fiducial volume		1 year exposure	10 years exposure
(p1) $p \to e^+ \pi^0$ 45.3		45.3	0.1	0.5×10^{34}	0.4×10^{35}
ĺ	(p2) $p \rightarrow \pi^+ \bar{\nu}$	41.9	82 (3 km w.e.)	0.7×10^{33}	0.3×10^{34}
			151 (1 km w.e.)	0.5×10^{33}	0.2×10^{34}
			148 (0.5 km w.e.)	0.5×10^{33}	0.2×10^{34}
			143 (Under the hill)	0.4×10^{33}	0.2×10^{34}
			149 (Under the hill+2 veto planes)	0.5×10^{33}	0.2×10^{34}
			152 (Under the hill+3 veto planes)	0.5×10^{33}	0.2×10^{34}
	(p3) $p \rightarrow K^+ \bar{\nu}$	96.8	0.2 (3 km w.e.)	1.0×10^{34}	0.6×10^{35}
			0.2 (1 km w.e.)	0.8×10^{34}	0.6×10^{35}
			0.2 (0.5 km w.e.)	0.8×10^{34}	0.4×10^{35}
			0.2 (Under the hill)	$(0.8-0.7) \times 10^{34}$	$(0.5-0.4) \times 10^{35}$
			0.2 (Under the hill+ 2 veto planes)	$(0.9-0.8) \times 10^{34}$	$(0.5-0.5) \times 10^{35}$
			0.2 (Under the hill+ 3 veto planes)	$(1.0-0.8) \times 10^{34}$	$(0.6-0.5) \times 10^{35}$
ĺ	(p4) $p \rightarrow \mu^+ \pi^0$	44.8	0.8	0.4×10^{34}	0.2×10^{35}
Ì	(p5) $p \rightarrow \mu^+ K^0$	46.7	< 0.2	0.5×10^{34}	0.5×10^{35}
	(p6) $p \rightarrow e^+ K^0$	47.0	< 0.2	0.5×10^{34}	0.5×10^{35}
	(p7) $p \rightarrow e^+ \gamma$	98.0	< 0.2	1.1×10^{34}	1.1×10^{35}
	(p8) $p \rightarrow \mu^+ \gamma$	98.0	< 0.2	1.1×10^{34}	1.1×10^{35}
Ì	(p9) $p \rightarrow \mu^{-}\pi^{+}K^{+}$	97.6	0.1	1.1×10^{34}	0.8×10^{35}
Ì	(p10) $p \rightarrow e^+ \pi^+ \pi^-$	18.6	2.5	0.1×10^{34}	0.5×10^{34}
Ì	(n1) $n \to \pi^0 \bar{\nu}$	45.1	50 (3 km w.e.)	0.1×10^{34}	0.5×10^{34}
			92 (1 km w.e.)	0.1×10^{34}	0.4×10^{34}
			89 (0.5 km w.e.)	0.1×10^{34}	0.4×10^{34}
			86 (Under the hill)	0.1×10^{34}	0.3×10^{34}
			90 (Under the hill+ 2 veto planes)	0.1×10^{34}	0.4×10^{34}
			91 (Under the hill+ 3 veto planes)	0.1×10^{34}	0.4×10^{34}
ļ	(n2) $n \rightarrow e^- K^+$	96.0	< 0.2	1.4×10^{34}	1.4×10^{35}
	(n3) $n \rightarrow e^+ \pi^-$	44.4	0.8	0.4×10^{34}	0.2×10^{35}
	(n4) $n \rightarrow \mu^- \pi^+$	44.8	2.6	0.4×10^{34}	0.2×10^{35}

- Sensitivities for 100 kT active mass LAr detector.
- Cylindrical (twophase), 100 kt.
- From Bueno et al. JHEP04 (2007) 041.
- Muon background reduced by fiducialisation and small dead time.
- Total background is dominated by atmospheric neutrinos.

LAGUNA-LBNO

Channel	Cut	Total background	τ/B limit (years)
	efficiency (%)	in fiducial volume	10 years exposure
(p1) $p \rightarrow e^+ \pi^0$	45.3	0.2	1×10^{34}
(p2) $p \to \pi^+ \bar{\nu}$	41.9	164	0.1×10^{34}
(p3) $p \to K^+ \bar{\nu}$	96.8	0.4	2×10^{34}
(p4) $p \rightarrow \mu^+ \pi^0$	44.8	1.6	0.8×10^{34}
(p5) $p \rightarrow \mu^+ K^0$	46.7	< 0.4	1×10^{34}
(p6) $p \rightarrow e^+ K^0$	47.0	< 0.4	1×10^{34}
(p7) $p \rightarrow e^+ \gamma$	98.0	< 0.4	2×10^{34}
(p8) $p \to \mu^+ \gamma$	98.0	< 0.4	2×10^{34}
(p9) $p \rightarrow \mu^- \pi^+ K^+$	97.6	0.2	2×10^{34}
(p10) $p \rightarrow e^+ \pi^+ \pi^-$	18.6	5	0.2×10^{34}
(n1) $n \to \pi^0 \bar{\nu}$	45.1	100	0.2×10^{34}
(n2) $n \rightarrow e^- K^+$	96.0	< 0.4	2×10^{34}
(n3) $n \to e^+ \pi^-$	44.4	1.6	0.8×10^{34}
(n4) $n \to \mu^- \pi^+$	44.8	5.2	0.5×10^{34}

- From EoI from LBNO to CERN: LBNO Collaboration: CERN-SPSC-2012-021, SPSC-EOI-007.
- Events in 20 kT (two-phase, spherical), 10 years running.
- Background is from atmospheric neutrinos.

ELBNF meeting, Fermilab, 22-23 January 2015 Vitaly Kudryavtsev, University of Sheffield 5

Muon-induced background

- No muon in the detector (track length < 20 cm). Loss of efficiency < 0.1%.
- Unambiguous identification of a charged kaon.
- No activity near the wall (<10 cm).

~ _<mark>K</mark>0

- From Klinger and Kudryavtsev. LAGUNA-LBNO talk.
- Kaon energy deposition < 250 MeV. Includes Fermi motion, nuclear cascade and smearing.
- Total energy deposition < 1 GeV.
- Energy deposition from non-kaons < 50 MeV.

Particle ID

- Simulated and measured d*E*/dx for different particles.
- Left: simulations from Bueno et al. JHEP04 (2007) 041.
- **Right: measurements and simulations from Antonello et al. Adv. High Energy Phys. (2013) 260820.**

ELBNF meeting, Fermilab, 22-23 January 2015 Vitaly Kudryavtsev, University of Sheffield 7

LBNE – muon model

- Using currently expected location of a cavern for 10 kt, surface profile and rock composition.
- Muons transported and then sampled underground.
- Kudryavtsev et al. LBNE-doc-9673.

LBNE – atmospheric neutrinos

- The main background may come from NC interactions resulting in a K^+ and no other charged particles, such as: $vp \rightarrow vK^+\Lambda^0(\Sigma^0)$
- There are also processes with a K^0 production followed by the charge exchange reaction and a K^+ as a result.
- Table taken from A. Blake. LBNE-doc-8836. 34.8 Mt×years.

Selection	Events	Events/Mt-yr
All interactions	10,000,000	287,944
K ⁺ emitted by interaction	73,799	2,125
K ⁺ in final state (`kIsStableFinalState')	64,560	1,859
One K ⁺ in final state	63,576	1,831
No other charged particles	1,865	54
No photons or neutral pions	1,205	35
p _K < 800 MeV [see next slide]	701	20
Reject neutral hyperons (Λ^0 , Σ^0)	1	<1
Reject neutral kaons (K ⁰)	0	0

LBNE - sensitivities

- Sensitivity of about a few ×10³⁴ years are within reach for this specific channel.
- From LBNE Collaboration. arXiv: 1307.7335 [hep-ex]

LBNE - sensitivities

ELBNF meeting, Fermilab, 22-23 January 2015 Vitaly Kudryavtsev, University of Sheffield 11

Outstanding questions

- Good start in the two collaborations showing the potential of LAr and complementarity (for some decay channels, superiority) to water Cherenkov detectors.
- However, most work is still preliminary.
- All simulations and simulated data analysis are done for 'truth' with parameterised detector response, no specific detector simulations, signal processing, reconstruction.
- So far within simplified detector geometry (only a fraction of neutrino events have been passed through LArSoft, E. Church, LBNE-doc-8729).
- Parameterised energy, position and angular resolutions.
- No TPC, no charge collection.
- No light collection to determine initial time.
- Full particle ID.
- Simplified nuclear effects.
- Most simulations for one specific decay mode.

Goals, priorities, issues

- Not in any specific order.
- Experiment:
 - Define conceptual detector design, at least key features.
 - Define detector location and orientation (muon model).
 - Define software framework (art, LArSoft).
 - Improve event processing and reconstruction.
 - Check particle ID and misidentification.
 - Estimate efficiency / signal loss.
- Physics models:
 - Neutrino interactions and proton decay (GENIE).
 - Include nuclear effects.

- ...

Possible first steps

- Form a working group/subgroup. Identify people who will work.
- Complete atmospheric neutrino simulation/analysis for a mode with *K*⁺.
- Complete muon event analysis for a single phase detector.
- Extend simulations to other decay modes (signal and background).
- Produce a complete picture of background based on truth and parameterised detector response.
- Add existing specific detector features (simulation within a specific software, such as LArSoft): cells/TPC, dead argon, details of environment.
- Use full event processing, reconstruction.

• ...

Help from R&D

- 35t prototype, LAr1-ND, LAriat, CERN neutrino platform...
- Particle identification, misidentification.
- Energy, spatial, angular resolution.
- Cross-sections of neutrino interactions with a production of kaons.
- Charge-exchange processes.
- Design optimisation.
- • •