Solenoid Magnet System

Outline

•Introduction

•Scope

•Key Design issues

•Conclusions

RESMM'12

February 13, 2011

Michael Lamm For the Mu2e Solenoids

L2 Solenoid

- Power Supply/Quench Protection
- Cryoplant (actually off project)

- Field Mapping
- Ancillary Equipment
- Insulating vacuum
- Installation and commissioning

Design Specifications

- Field quality
 - Monotonic axial gradients in transport straight sections
 - Field uniformity in spectrometer
- Quench margin and stability
 - 1.5 K in temperature, 30-35% in Jc along load line, stability (TBD)
 - Stabilizer resistivity, conductor heat capacity, thermal conductivity
- Fits within the cryogenic budget
 - 1 Satellite refrigerator steady state
 - 1-2 Additional refrigerators for cooldown/quench recovery
- Limited radiation damage
 - Superconductor and insulation secondary to stabilizer degradation
 - RRR reductions and annealing compatible with planned thermal cycles
 - Frequency of thermal cycles (for radiation repair) coincides with
 expected accelerator and/or cryogenic operation cycles

RESMM'12 Mu2e Soleniods

Cost and Time Considerations

- Cost is a major factor
 - Raw materials for both magnet and shields
 - Pool of vendors capable of building large-complex magnets
 - Simplified infrastructure with commonality to rest of muon campus
- Time Constraints
 - Magnets are on the critical path for most of project life.
 - Present Schedule
 - June 2012: Prototype conductor order (1 year lead time)
 - June 2013:
 - Place order for conductor production run
 - Place contract for magnet fabrication

PS Baseline Design

4-5T→ 2.5 T Axial Gradient

Gradient made by 3 axial coils same turn density but increase # of layers (3,2,2 layers)

- Wound on individual bobbins
- I operation ~9kA
- Trim power supply to adjust matching to TS
- Indirect Cooling (Thermal Siphon)

Aluminum stabilized NbTi

- reduce weight and nuclear heating
- Special high strength/high conductivity aluminum needed (like ATLAS Central Solenoid)

Vadim Kashikhin, task leader See Next Presentation

3-2-2 magnet design

Gradient Uniformity meets field spec.

RESMM'12 Mu2e Soleniods

Quench Stability

- Is magnet stable against quenches caused by expected mechanical motion?
 - Motion of strand within cable
 - Motion of cable within epoxy
 - Epoxy Cracks
- Difficult to predict from first principles
 - Comparison to successful magnet of similar design
 - Scale with properties of material elements
 - Important material attributes:
 - Thermal conductivity
 - Resistivity at operational fields
 - Heat capacity
- This will be covered in the next talk....

New baseline Transport Solenoid

•TS1/TS5: Negative axial gradient and field Matching to PS/TS <u>TS1 subject</u> to primary target radiation

> •TS2/TS4: Horizontal tilt to compensate for horizontal drift

•TS3: → TS3U, TS3D.
Wider coils to compensate for gap

Two cryostats: TSU, TSDNew coil fabrication proposed

Feb. 13, 2012

Coil Fabrication

- Forged aluminum ring, machined to final shape
 - Placement of coil in transport, including bends and tilts are built into outer shell assembly

Al Outer

Supports

TS field quality

- Negative Gradient in all straight sections
- Smooth transitions between magnet elements
- Design focus: sensitivity to conductor placement on meeting specs.

RESMM'12 Mu2e Soleniods

DS Baseline

- Gradient section: 2 layer coils
 - Gradient accomplished by use of spacers
- Spectrometer: 3 <u>Single Layer</u> Coils → shorter coils, greatly reduced conductor volume
- Relaxed calorimeter field requirements → shorten spectrometer
- No significant materials issues with respect to radiation damage

R. Ostojic DS Leader

Cryogenic Distribution Scope

Production solenoid

Thermal Siphon vs. Forced Flow

- Present baseline
 - Thermal Siphon for PS
 - Forced flow for TS and DS
- Advantages to Thermal Siphon
 - Maintain lowest temperature at magnet
 - Simple, passive → cost effective for both design, fabrication and operation
- Advantage to Forced Flow
 - Can tie together circuits that are not well thermally coupled; less sensitive to geometric constraints (might be better for TS)
 - Less passive → more control

Refrigeration loads at 4.5 K

- For cooling entirely with thermal siphons
 - Total heat load at 4.5 K (which equals the refrigeration load) is 230 W
 - Total 4.5 K helium flow rate is 12 grams/sec
- For cooling PS with thermal siphon and others with forced flow
 - Total refrigeration load (which is circulating pump heat plus the transfer and magnet heat loads) = 350 W
 - Peak helium temperature (assuming 50 grams/sec circulating flow and a 4.50 K inlet temperature) = 4.68 K.

Cool-down and Warm-up

- First look Production Solenoid. Treat as simply 11.8 metric tons of aluminum for thermal energy estimate
 - Start at 300 K and cool to 80 K by means of the same heat exchanger system used for thermal shield cooling
 - Then cool to 5 K by means of one satellite refrigerator running in liquefier mode (getting warm gas back)

Result

- Time from 300 K to 80 K is about 18 hours
- Time from 80 K to 5 K is about 26 hours
- Conclusion
 - Assuming no constraints due to thermal stresses (no delta-T constraints) for the 80 K portion of the cool-down, one could cool the 11.8 ton PS solenoid in about 2 days.
 - This is just a rough estimate, but it seems reasonable considering that we cooled multi-ton SSC and LHC cold iron magnets at MTF in a day.
- In reality, we may have some constraints so as not to thermally stress the magnet, resulting in a time of more like 4 7 days.
- Warm up time back to ~273K is comparable

Conclusion

- Present design meets mu2e experiment requirements
- Radiation studies (presented in related talks) show that magnet temperature will not exceed 5K.
- Warm up to repair radiation damage: >1 between thermal cycles
 - Time for warm up/cool down 1-2 weeks
 - Consistent with reasonable expectations for accelerator operations
- At 300 kGy/year,
 - Damage to epoxy and superconductor \rightarrow > 20 year life time

Heat and flow estimates

"Best estimates" (no contingency)	Production solenoid	Transport solenoid U	Transport solenoid D	Detector solenoid		
Nominal temperature Level	4.5K					
4.5 K full power magnet heat (W)	64.9	44.0	42.0	22.5		
4.5 K feedbox and link heat (W)	14.0	14.0	14.0	14.0		
Thermal siphon						
Total heat load (W)	78.90					
Total helium flow (g/sec)	4.20					
2.3 bar to 2.0 bar forced flow						
Helium inlet temperature (K)		4.50	4.50	4.50		
Total heat added (W)		58.00	56.00	36.50		
Selected flow rate (g/s)		50.00	50.00	50.00		
Exit temperature		4.68	4.67	4.61		
Circulating pump real work (W)		25.00	25.00	25.00		
Circ pump system static heat (W)		15.00	15.00	15.00		
Total refrigerator cooling load (W)		98.00	96.00	76.50		
Nominal temperature Level		80	К			
80 K magnet heat (W)	130.7	252.0	252.0	500.0		
80 K feedbox and link heat (W)	140.0	140.0	140.0	140.0		
Total 80 K heat (W)	270.7	392.0	392.0	640.0		
N2 usage for shield (liquid liters per day)	149.93	217.11	217.11	354.46		
Number of 10000 Amp HTS leads	2	0	0	2		
Number of 2000 Amp vapor cooled leads	0	2	2	0		
Nitrogen lead flow per magnet (g/s)	2.20			2.20		
N2 usage for leads (liquid liters per day)	237.60			237.60		
Liquid helium lead flow per magnet (g/s)		0.16	0.16			

Heat budget is <	420.0	W
Total 4.5 K heat =	349.4	W
Total heat / budget =	0.83	

Properties of Al and Cu

Compare Aluminum and Copper properties at 5H				s at 5K					
Aluminum Thermal conductivity W/(m*K)					Electrical resistivity nOhm*m				
T = 5 K	B = 0 T	1 T	2 T	3 T		B = 0 T	1 T	2 T	3 T
RRR = 100	487	419	415	412					
RRR = 200	959	727	713	707		0.167	0.208	0.212	0.215
RRR = 400	1907	1168	1132	1117		0.069	0.11	0.114	0.117
RRR = 600	2861	1468	1412	1387					
Copper Thermal conductivity W/(m*K)				Electrical resistivity nOhm*m					
Copper	Thermal co	onductivity	W/(m*K)			Electrical	resistivity	nOhm*m	
Copper T = 5 K	Thermal co B = 0 T	onductivity 1 T	W/(m*K) 2 T	3 T		Electrical $B = 0 T$	resistivity 1 T	nOhm*m 2 T	3 T
Copper T = 5 K RRR = 50	Thermal co B = 0 T 375	onductivity 1 T 326	W/(m*K) 2 T 293	3 T 267		Electrical $B = 0 T$	resistivity 1 T	nOhm*m 2 T	3 T
Copper T = 5 K RRR = 50 RRR = 100	Thermal co B = 0 T 375 749	onductivity 1 T 326 576	W/(m*K) 2 T 293 481	3 T 267 415		Electrical B = 0 T 0.153	resistivity 1 T 0.193	nOhm*m 2 T 0.233	3 T 0.273
Copper T = 5 K RRR = 50 RRR = 100 RRR = 150	Thermal co B = 0 T 375 749 1122	onductivity 1 T 326 576 775	W/(m*K) 2 T 293 481 611	3 T 267 415 509		Electrical $B = 0 T$ 0.153	resistivity 1 T 0.193	nOhm*m 2 T 0.233	3 T 0.273
Copper T = 5 K RRR = 50 RRR = 100 RRR = 150 RRR = 200	Thermal co B = 0 T 375 749 1122 1494	onductivity 1 T 326 576 775 936	W/(m*K) 2 T 293 481 611 707	3 T 267 415 509 574		Electrical B = 0 T 0.153 0.077	resistivity 1 T 0.193 0.117	nOhm*m 2 T 0.233 0.157	3 T 0.273 0.197
Copper T = 5 K RRR = 50 RRR = 100 RRR = 150 RRR = 200	Thermal co B = 0 T 375 749 1122 1494	onductivity 1 T 326 576 775 936	W/(m*K) 2 T 293 481 611 707	3 T 267 415 509 574		Electrical B = 0 T 0.153 0.077	resistivity 1 T 0.193 0.117	 nOhm*m 2 T 0.233 0.157 	3 T 0.273 0.197
Copper T = 5 K RRR = 50 RRR = 100 RRR = 150 RRR = 200 Data from MATPRO:	Thermal co B = 0 T 375 749 1122 1494	onductivity 1 T 326 576 775 936	W/(m*K) 2 T 293 481 611 707	3 T 267 415 509 574		Electrical B = 0 T 0.153 0.077	resistivity 1 T 0.193 0.117	nOhm*m 2 T 0.233 0.157	3 T 0.273 0.197
Copper T = 5 K RRR = 50 RRR = 100 RRR = 150 RRR = 200 Data from MATPRO: L. Rossi, M. Sorbi, "	Thermal co B = 0 T 375 749 1122 1494 MATPRO:	a Compute	W/(m*K) 2 T 293 481 611 707 r Library o	3 T 267 415 509 574	Prope	Electrical B = 0 T 0.153 0.077	resistivity 1 T 0.193 0.117 ogenic Ten	nOhm*m 2 T 0.233 0.157	3 T 0.273 0.197

INFN/TC-02/02 and CARE-Note-2005-018-HHH

