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L2 Solenoid
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• Power Supply/Quench Protection
• Cryoplant (actually off project)

• Field Mapping 
• Ancillary Equipment
• Insulating vacuum
• Installation and commissioning

• Production Solenoid (PS)
• Transport Solenoid (TS)
• Detector Solenoid (DS)
• Cryogenic Distribution
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Design Specifications
• Field quality

– Monotonic axial gradients in transport straight sections
– Field uniformity in spectrometer

• Quench margin and stability
– 1.5 K in temperature, 30-35% in Jc along load line, stability (TBD)
– Stabilizer resistivity, conductor heat capacity, thermal conductivity

• Fits within the cryogenic budget
– 1 Satellite refrigerator steady state
– 1-2 Additional refrigerators for cooldown/quench recovery

• Limited radiation damage
– Superconductor and insulation secondary to stabilizer degradation
– RRR reductions and annealing compatible with planned thermal cycles
– Frequency of thermal cycles (for radiation repair) coincides with 

expected accelerator and/or cryogenic operation cycles
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Cost and Time Considerations
• Cost is a major factor

– Raw materials for both magnet and shields
– Pool of vendors capable of building large-complex magnets
– Simplified infrastructure with commonality to rest of muon campus

• Time Constraints
– Magnets are on the critical path for most of project life.
– Present Schedule

• June 2012: Prototype conductor order (1 year lead time)
• June 2013:

– Place order for conductor production run
– Place contract for magnet fabrication
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Gradient made by 3 axial coils same 
turn density but increase # of layers 
(3,2,2 layers)

– Wound on individual bobbins
– I operation ~9kA
– Trim power supply to adjust 

matching to TS
– Indirect Cooling (Thermal Siphon)

PS Baseline Design

4-5T 2.5 T Axial Gradient

Vadim Kashikhin, task leader
See Next Presentation 5

Aluminum stabilized NbTi 
– reduce weight and nuclear heating
– Special high strength/high 

conductivity aluminum needed (like 
ATLAS Central Solenoid)



3-2-2 magnet design
Gradient Uniformity meets field spec.
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Quench protection and stabilility

Feb. 13, 2012 7RESMM'12  Mu2e Soleniods

PS Quench Studies

Comfortably below 130K quench limits



Quench Stability
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• Is magnet stable against quenches caused by 
expected mechanical motion?
• Motion of strand within cable
• Motion of cable within epoxy
• Epoxy Cracks

• Difficult to predict from first principles
• Comparison to successful magnet of similar 

design
• Scale with properties of material elements
• Important material attributes:

• Thermal conductivity
• Resistivity at operational fields
• Heat capacity 

• This will be covered in the next talk….
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New baseline Transport Solenoid

TS1

TS2

TS4

TS5

•TS1/TS5: Negative axial gradient and 
field Matching to PS/TS  TS1 subject 
to primary target radiation

•Two cryostats: TSU, TSD

•TS3:  TS3U, TS3D.  
Wider coils to 
compensate for gap

Rotatable Collimator,  
P-bar window

G. Ambrosio
TS Leader
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•TS2/TS4: Horizontal tilt 
to compensate for 
horizontal drift

•New coil fabrication 
proposed
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Coil Fabrication
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Bolted 
connections

Conductor

Al Outer 
Supports

• Placement of coil in transport, 
including bends and tilts are built 
into outer shell assembly

Feb. 13, 2012

• Fabrication unit consists of two coils with 
outer support aluminum structure

• Forged aluminum ring, machined to final 
shape
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TS field quality
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• Negative Gradient in all straight 
sections

• Smooth transitions between magnet 
elements

• Design focus:  sensitivity to conductor 
placement on meeting specs.



DS Baseline
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Spectrometer SectionGradient Section

• Gradient section:  2 layer coils
– Gradient accomplished by use of spacers

• Spectrometer: 3 Single Layer Coils   shorter coils, greatly 
reduced conductor volume

• Relaxed calorimeter field requirements shorten spectrometer
• No significant materials issues with respect to radiation damage
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R. Ostojic
DS Leader
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Cryogenic Distribution Scope
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T. Peterson
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Production solenoid 
thermal siphon 
cooling scheme
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Thermal Siphon vs. Forced Flow

• Present baseline
• Thermal Siphon for PS
• Forced flow for TS and DS

• Advantages to Thermal Siphon
• Maintain lowest temperature at magnet
• Simple, passive cost effective for both design, 

fabrication and operation
• Advantage to Forced Flow

• Can tie together circuits that are not well thermally 
coupled;  less sensitive to geometric constraints  (might 
be better for TS)

• Less passive  more control 
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Refrigeration loads at 4.5 K
• For cooling entirely with thermal siphons 

– Total heat load at 4.5 K (which equals the 
refrigeration load) is 230 W 

– Total 4.5 K helium flow rate is 12 grams/sec 
• For cooling PS with thermal siphon and 

others with forced flow 
– Total refrigeration load (which is circulating pump 

heat plus the transfer and magnet heat loads) = 
350 W 

– Peak helium temperature (assuming 50 grams/sec 
circulating flow and a 4.50 K inlet temperature) = 
4.68 K.  
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Cool-down and Warm-up
• First look – Production Solenoid.  Treat as simply 11.8 metric 

tons of aluminum for thermal energy estimate 
– Start at 300 K and cool to 80 K by means of the same heat exchanger 

system used for thermal shield cooling
– Then cool to 5 K by means of one satellite refrigerator running in 

liquefier mode (getting warm gas back)
• Result 

– Time from 300 K to 80 K is about 18 hours
– Time from 80 K to 5 K is about 26 hours

• Conclusion
– Assuming no constraints due to thermal stresses (no delta-T 

constraints) for the 80 K portion of the cool-down, one could cool the 
11.8 ton PS solenoid in about 2 days.   

– This is just a rough estimate, but it seems reasonable considering that 
we cooled multi-ton SSC and LHC cold iron magnets at MTF in a day.  

• In reality, we may have some constraints so as not to thermally 
stress the magnet, resulting in a time of more like 4 – 7 days. 

• Warm up time back to ~273K is comparable
RESMM'12  Mu2e Soleniods



18

Conclusion

• Present design meets mu2e experiment requirements
• Radiation studies (presented in related talks) show  

that magnet temperature will not exceed 5K.  
• Warm up to repair radiation damage: >1 between 

thermal cycles
– Time for warm up/cool down 1-2 weeks 
– Consistent with reasonable expectations for accelerator 

operations

• At 300 kGy/year,
– Damage to epoxy and superconductor  > 20 year life 

time
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Heat and flow estimates

RESMM'12  Mu2e Soleniods

Heat budget is < 420.0 W
Total 4.5 K heat = 349.4 W

Total heat / budget = 0.83



Properties of Al and Cu
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Compare Aluminum and Copper properties at 5K

Aluminum Thermal conductivity  W/(m*K) Electrical resistivity  nOhm*m
T = 5 K B = 0 T 1 T 2 T 3 T B = 0 T 1 T 2 T 3 T

RRR = 100 487 419 415 412
RRR = 200 959 727 713 707 0.167 0.208 0.212 0.215
RRR = 400 1907 1168 1132 1117 0.069 0.11 0.114 0.117
RRR = 600 2861 1468 1412 1387

Copper Thermal conductivity  W/(m*K) Electrical resistivity  nOhm*m
T = 5 K B = 0 T 1 T 2 T 3 T B = 0 T 1 T 2 T 3 T

RRR = 50 375 326 293 267
RRR = 100 749 576 481 415 0.153 0.193 0.233 0.273
RRR = 150 1122 775 611 509
RRR = 200 1494 936 707 574 0.077 0.117 0.157 0.197

Data from 
MATPRO: 
L. Rossi, M. Sorbi, "MATPRO: a Computer Library of Material Property at Cryogenic Temperature"  
INFN/TC-02/02 and CARE-Note-2005-018-HHH
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