Dirt Neutrons in MicroBooNE

Katherine Woodruff with

Vassili Papavassiliou Stephen Pate Tia Miceli

New Perspectives

June 2015

MicroBooNE

- MicroBooNE is a liquid Argon time projection chamber (LArTPC) designed to detect neutrino interactions
- ► The liquid argon serves as a target for a neutrino beam
- Charged particles ionize the argon
- lonization electrons follow electric field to anode
- ► Three wire anode planes on the TPC record the signals

MicroBooNE

- MicroBooNE physics goals
 - ► Investigate neutrino oscillations at low energies
 → Look at MiniBooNE low-E excess
 - ► Measure neutrino cross sections at low energies

- ► NMSU-MicroBooNE physics goals
 - Want to understand proton structure
 - Measure low Q^2 neutral current interactions
 - At low Q², NC-elastic cross section dominated by axial form factor
 - Can measure strange quark contribution to proton spin, Δs
 - $ightharpoonup \Delta s$ has been a puzzle for over 30 years

<ロト <値 > < き > < き > ・ き ・ り へ ②

Neutral Current Neutrino Interactions

Neutral current (NC) neutrino interaction:

ightharpoonup Exchange of Z^0 boson

Neutral Current Neutrino Interactions

Neutral current (NC) neutrino interaction:

ightharpoonup Exchange of Z^0 boson

Simulated example proton event in MicroBooNE

- ▶ Dirt neutrons are produced in dirt and interact inside MicroBooNE
 - ▶ Worst background to NC-elastic events

- ▶ Dirt neutrons are produced in dirt and interact inside MicroBooNE
 - ► Worst background to NC-elastic events

► These neutrons won't ionize the argon

- ▶ Dirt neutrons are produced in dirt and interact inside MicroBooNE
 - ▶ Worst background to NC-elastic events

- ► These neutrons won't ionize the argon
- Signal looks like NC-elastic protons

- Very large Monte Carlo Sample generated
 - Genie to generate neutrino events
 - ► Geant4 to simulate geometry and propagate tracks
- \sim 5,000,000 events generated
 - ightarrow 5.09e19 POT \sim 10% of total MicroBooNE POT

Plot shows origin of neutrons that scatter protons in the TPC

From Monte Carlo:

- ► 1277 protons from NC-elastic interactions
- ▶ 1371 protons from dirt neutrons
- Without any cuts
 - roughly one-to-one

- Ratio of signal to background varies by energy, angle and position of proton
- A clean sample of dirt neutron data would allow us to study these distributions

- Dirt neutron produced upstream in the dirt
- Other charged particles may be produced in interaction
- Scintillator detector just upstream of μBooNE could detect these
 - Potential upgrade currently under study

- Dirt neutron produced upstream in the dirt
- Other charged particles may be produced in interaction
- Scintillator detector just upstream of μBooNE could detect these
 - Potential upgrade currently under study

► Tagged sample is 95% dirt events

► Dirt tagger gives a representative subset of dirt neutron events for certain variables

Conclusion

- ▶ Dirt neutrons are a very large background to NCE proton scattering
 - ► These are not easily separable
 - ▶ We need to be confident in the dirt neutron distributions
 - ▶ A dirt event tagger could provide us with a clean sample
- ► Next Steps:
 - Study which variables can be represented by the dirt tagger subset
 - Determine how much impact this will have on NC-elastic analysis

Thank you!