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1980s & 1990s - Reactor neutrino flux 
measurements in U.S. and Europe 

1995 - Nobel Prize to Fred 
Reines at UC Irvine

2003 - First observation of reactor 
antineutrino disappearance

1956 - First observation 
of (anti)neutrinos

Past Reactor Experiments
Hanford
Savannah River
ILL, France
Bugey, France
Rovno, Russia
Goesgen, Switzerland
Krasnoyark, Russia
Palo Verde
Chooz, France

2008 - Precision measurement of 
Δm122 . Evidence for oscillation

KamLAND

Chooz

Savannah River

Chooz

Daya Bay

2012 - Measurement of θ13 
with Reactor Neutrinos

Reactor Neutrinos
Daya Bay, Double 
Chooz, RENO
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Finding the right underground 
location near reactors....

55 years of liquid scintillator 
detectors with varying baselines.
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Observable !  Spectrum

From Bemporad, Gratta and Vogel

calculated reactor 
spectrum

mean energy of νe: 3.6 MeV
only disappearance 
experiments possible
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inverse beta decay  
νe + p → e+ + n

Source Detection

observed spectrum

νe from β-decays 
of n-rich fission products

> 99.9% of νe are produced by fissions in 235U, 
238U, 239Pu, 241Pu

pure νe source

Reactor Antineutrinos
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Detector development
- large, homogeneous low-background scintillator 
detectors underground
-  R&D towards segmented detectors near surface

Reactor Antineutrino Spectra, Fuel, Cores
- precision measurement of reactor antineutrino spectrum 
- studying reactor core evolution
- absolute measurement of reactor antineutrino flux

Neutrino Oscillation Experiments
- precision measurement of oscillation 
parameters Δm221, Δm2ee, sin22θ13
- search for short-baseline oscillations
- probing the mass hierarchy
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US researchers have played leading roles in recent and past experiments

Scientific Accomplishments and Goals
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Detecting Antineutrinos

signal: delayed coincidence 
between positron and neutron 
capture
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inverse beta decay
νe + p → e+ + n Reines, Cowan

early experiments founds that shielding and background 
reduction are essential

pioneering efforts by Reines 
and Cowan in the US
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Backgrounds in Reactor Experiments
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Correlated  β-n decay

Fast neutrons

Eμ>4 GeV (visible)

uncorrelated

9Li

Constrain fast-n rate using
IBD-like signals in 10-50 MeV

accidentals

cosmogenic-induced backgrounds

background considerations require 
radiopure detectors in underground locations

correlated events can mimic antineutrino 
signal

- prompt: β-decay
- delayed: neutron capture

9Li→9Be+e−+νe

↵n +2α
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Measure (non)-1/r2 behavior of νe interaction rate
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L/E →Δm2 amplitude of oscillation → θ  for 3 active ν, two 
different oscillation length 
scales: Δm212, Δm223

Δm212 ~7.6 x 10-5 eV2

Δm223 ~2.4 x 10-3 eV2

Reactor Neutrino Oscillation Experiments
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Reactor Experiments at Different Scales
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Past&Present

20 ton/1km 1 kton/180kmFuture 1 ton/10m 20 kton/50km
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Kamioka

1kt liquid scintillator detector 
in dedicated underground 
facility

measures antineutrinos 
from 55 reactors 

mean, flux-weighted 
reactor distance ~ 180km

2700 mwe overburden 

KamLAND at ~180km Baseline
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Kamiokande ➔ KamLAND ➔ KamLAND-Zen

Underground excavation at Kamioka has enabled a long-term program of 
underground science

reactor ν geo ν solar ν 0νββ sterile 
ν?
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Reactor Experiments at ~1km Baseline
Facilities Designed for an Optimized Oscillation Measurement

Double Chooz RENO

Daya Bay
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RPCs 

antineutrino detectors (AD)
concrete

outer and inner 
water shields
(IWS and OWS)

automated calibration units (ACU)
AD Gd-LS target

Example: 
Daya Bay

6 reactor cores
3 experimental halls
8 detectors 

Reactor Experiments at ~1km Baseline

specialized underground infrastructure
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RPCs 

antineutrino detectors (AD)
concrete

outer and inner 
water shields
(IWS and OWS)

automated calibration units (ACU)
AD Gd-LS target

Example: 
Daya Bay

6 reactor cores
3 experimental halls
8 detectors 

experimental halls with several hundred mwe overburden

Reactor Experiments at ~1km Baseline
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Example: 
Daya Bay

Experimental halls and underground infrastructure enable 
new R&D and auxiliary underground measurements

• R&D towards dark matter experiment in liquid storage pools
• muon and cosmogenic background studies

Reactor Experiments at ~1km Baseline
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JUNO and RENO-50 (proposed)

Reactor Experiments at ~50km Baseline
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baseline requires large 
precision detectors, and 
supporting underground 
facilities

aim to make 
precision 
measurement of 
reactor spectrum 
to determine 
mass hierarchy

20x larger than KamLAND  
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R&D from 2012-2015 

Construction start ~ 2015/16? 

Early funding commitments in host country (China)
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JUNO (proposed)

From Y. Wang

Reactor Experiments at ~50km Baseline
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RENO-50 (proposed)

From W. Wang and RENO-50 workshop

Reactor Experiments at ~50km Baseline
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50-km baseline reactor experiments require large underground facilities and 
precision reactor antineutrino detectors

From Y. Wang

Reactor Experiments at ~50km Baseline
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HFIR, ORNL

NBSR, NIST

ATR, INLavailable baselines at 
US research reactors

existing data

Reactor Experiments at Short Baseline (~10m)
Short-Baseline Experiments

- short-baseline requires much smaller detectors 
(ton-scale)
- several proposed experiments worldwide
- most of them near surface with little overburden
- considering segmented detector to mitigate 
backgrounds

NIST
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Conclusions
• Reactor antineutrinos as probe of neutrino properties (oscillation parameters, mass 

hierarchy, short-baseline searches, magnetic moment) 
• Detectors for reactor experiments at > 100m baseline require medium-depth 

underground laboratories (several hundred mwe overburden).
• Strong US involvement in recent reactor experiments overseas (KamLAND, Daya Bay, 

Double Chooz)
• Reactor neutrino experiments and associated underground spaces have enabled R&D 

and development of new neutrino experimental initiatives overseas:
– KamLAND ➔ KamLAND-Zen, CeLAND
– Daya Bay ➔ JUNO, R&D for dark matter experiments in Daya Bay halls
– RENO ➔ RENO-50

• Worldwide efforts towards future reactor experiments at medium baseline (~50km) and 
short-baseline (~10m). Funding commitments from host countries (RENO-50, JUNO, 
STEREO). May have US involvement. Opportunities for short-baseline searches in US.

• Future reactor experiments and underground space:
– planned construction of dedicated underground space overseas for medium-baseline reactor 

experiments
– multi-purpose use of underground space for neutrino and dark matter R&D in host countries
– synergies with non-proliferation effort in US (see A. Bernstein’s talk)
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