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Topics in Lecture 3

 Using calorimeter information
 Calibration
 Complementarity of tracking and calorimetry

 Reconstruction of jets
 Algorithms
 Jet Energy Corrections

2



Calibration and Linearity

 Goal : uniform and known response to a given calorimeter signal
 For example, signal (charge) from detector is in pC, digitized to ADC counts 

 want linear response
 channel-to-channel differences : leakage, upstream material, electronics

 Calibrations:
 Relative calibration normalizes the response between all channels
 Absolute calibration translates it to energy units (from ADC counts)

 How-to : testbeam, electronics calibration, in-situ, simulation
3
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To get to physics, first must calibrate

 Component calibration
 For example, all PMT’s are tested standalone

 Testbeam – operate detector (or part of) in a known-
energy, known-species beam
 In addition to R&D for new detectors, provide a testbench

for the final modules of the calorimeter
 In-situ calibration

 Pulse detector with known energy, measure response
 Cosmic muons, single particles

 Physics object calibration
 “tag and probe”, dijet balance, photon+jet balance, W in top 

events 4



Component testing and calibration
 Example – PMT’s for CMS 

HCAL (HF)
 Test station – dark box, laser input
 Individual testing, relative 

calibration
 PMT’s characterized, data put into 

database for later calibration input:
 Double-pulse linearity,
 Gain vs HV 
 Single photoelectron spectrum
 X-Y scan (spatial uniformity)
 Lifetime, pulse width, rise time
 Transit time and spread
 Anode dark current
 Relative gain coupled with 

cathode sensitivity
 Pulse linearity
 Quality control decision

 All (or as many as possible) 
components of detector are 
calibrated long before they are 
integrated into detector 5
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In-situ Detector/Electronics Calibration

 Example: inject known-energy pulse (eg from radioactive 
source or laser), then normalize readout of all channels

 Example: Atlas and CMS -- similar methods:

6
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Calibration with Muons

 Use muons from cosmic rays, testbeam, or physics events
 Will give MIP response in calorimeter cell
 Equalize channel-to-channel response
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•CDF: 
•select muons from J/ψ and W
•peak in HAD calo: ≈2 GeV (in 
CDF)

•Check time stability
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In Situ Calorimeter Calibration: EM Energy 

 MIP peak:
 CDF  300 MeV

 Z→ ee peak:
 Set absolute EM scale in central 

and endcap

 E/p for electrons
 After having calibrated p and 

material, see response in E

CDF

Zee

Min. ion. 
peak
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Single Particle Response Simulation
 Single particle response:

 Measure with test beam
 In situ:

 Select “isolated” tracks and 
measure energy in tower 
behind them

 Tune simulation to describe 
E/p distributions at each p 
(use π/p/K average mixture 
in MC) 

CDF
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Single Particle Response Simulation

 MC models 
 Hadron response at low pT (in situ data) and high pT (test beam data)
 Electron response

CDF electrons

Typical jet composition:
-60% charged particles

-10% protons
-90% pions

-30% neutral pions (→γγ)
(EM response)

-10% other (neutrons,…) 



CMS ECAL calibration
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 Startup calibration based on 10 
years of test beam and cosmic 
ray pre-calibration, π0 calibration

 Precision of startup calibration
 ECAL Barrel 0.5 – 2.2% 

 1.2% in central region
 ECAL Endcap 5%
 Target with 10/pb: 0.5% EB, 1-2% in 

EE

 Calibration validated by 
observation of π0 and ηγγ



Single-particle response in CMS
 Compare response of isolated tracks with low ECAL eneryg in 

MinBias events with single pions from Monte Carlo

12Mean response in Data and MC agree within 2-3% in barrel region
In endcap, simulation is lower than data (~4%)



Jets from Collisions

 QCD interactions  Jets
 Types of Jets

 Parton level – quarks/gluons 
from initial collision

 Hadron level – fragmentation, 
decay, hadronization produce 
particles

 Experimental – what we see 
in the calorimeter, and how 
we interpret it

 Goal – take detector 
information, reconstruct 
parton level physics 13



Jet Algorithms

 Procedure to turn recorded detector info into jets 
 Or, looking at it from the other way, turn partons into jets 

 Constraints:
 Infrared  and collinear safe (see next slide)
 Invariant under boost (important for hadron colliders)
 Independent  of level (parton, hadron, calorimeter) and detector
 Easy to implement and use (computer resources), calibrate 14

Graphics from 
Kerstin Perez, 

ISSP 2009



Technical terms
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 Infrared safe – same 
jets even if one of the 
partons emits a soft 
gluon

 Collinear safe – same 
jets even if outgoing 
partons split

These situations would 
have the same jets

Graphics from Kerstin Perez, ISSP 2009



Jet Algorithms used at Hadron Colliders

 Choice of jet algorithms is an involved topic –
theorists and experimentalists have been working 
together for years to find the perfect scheme
 True to parton-level
 True to experimental (detector) level
 Taking into account detector effects, pileup, etc.

 There are many possible algorithms to choose from –
we won’t cover them all
 Here are examples from CMS: Anti-kT, SISCone and kT

jet algorithms: 
 Then, generator jets, calorimeter jets, calorimeter+track, and 

particle-flow jets for these jet algorithms
16



Cone Algorithms

 Cone  (traditional)
 clusters nearby in angular space
 Problem : seeded – introduces bias especially with pileup
 Problem : needs merging/overlap scheme, which every 

experiment implements differently
 Difficult to compare, feedback to theorists

 If you don’t seed the jets, takes N 2N time to find jets 
among N particles  (“unseeded”)
 unusable at hadron level (think of “simple” event with 100 

particles…)
 reduce to N2 ln(N) time – SISCone algorithm

17



JADE Durham kT

 kT
 Clusters nearby in momentum space
 Based on JADE or Durham algorithm -- exclusive iterative 

pairwise clustering scheme
 JADE algorithm uses test variable yij , and a combination procedure.
 Test if objects i and j should be combined according to whether yij < ycut.
 Also, consider next pair to combine (smallest value of yij) .
 Original JADE yij = M2

ij/Q2 where Q is the hard scale (i.e. the centre-of-
mass in e+e− annihilation) and M2 ij = 2EiEj(1 − cos θij) , ( invariant mass-
squared) 

 Repeated until no objects can be combined further 

 Problem with JADE – not IR, collinear safe
 Durham mod -- consists of replacing M2

ij in test variable by k2
Tij, 

 k2
Tij = 2min{Ei,Ej}2(1 − cos θij)   -- relative transverse momentum-

squared of i and j. 18



kT and anti-kT

 Advantages of kT
 Jet identification is unique – no merge/split stage 

 Disadvantage of kT
 Resulting jets are more amorphous, energy calibration 

difficult (subtraction for UE?), and analysis can be very 
computer intensive (time grows like N3)

 Anti-kT
 Like kT, only uses 1/pT as the distance parameter
 Improves performance with pileup
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Testing Jet Definitions

 See this very nice webpage 
http://www.lpthe.jussieu.fr/~salam/jet-quality/
 By  M. Cacciari, J. Rojo, G.P. Salam, and G. Soyez

arXiv:0810.1304
 You choose two jet algorithms, set the parameters, and it 

compares dijet mass distributions with your conditions

20

Your input –
twice for 

comparison

http://www.lpthe.jussieu.fr/~salam/jet-quality/�
http://arxiv.org/abs/0810.1304/�


Example: compare kT to anti-kT
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Without 
Pileup

With 
pileup



More on jet algorithms

 Algorithms often designed from parton point of view
 From the detector point of view

 What information goes into a jet?
 Calorimeter, tracking
 “Energy flow”

 Jet corrections, systematics
 Integration into experimental software.
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For Example, CMS Jets

 CMS has chosen the anti-kT algorithm, with R=0.5, 
as the default.  Then, 4 types of jets reconstructed:

23
From Joanna Weng



Particle Flow Jets
 Combines info from all subdetectors to produce particles

 Charged hadrons – from tracks
 Photons, neutral hadrons from ECAL, HCAL energy

 Clusters with no tracks
 Neutral particle overlapping with charged particles – subtract charged pt from 

cluster, remaining is neutral particle
 jets from resulting particles – charged hadrons and γ are 90% of jet energy 
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Jet Energy Scale

 Determine the energy of the partons produced in the 
hard scattering process

 Corrections needed for:
 Detector effects:

 Non-linearity of calorimeter
 Response to hadrons
 Poorly-instrumented  or non-functional regions

 Physics effects:
 Initial and final state radiation
 Hadronization
 Underlying event
 Parton flavor

 Need corrections for data and MC, validate in both
25



Jet Corrections

 Use CMS as an example, also show others
 CMS uses factorized approach
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• apply Jet Corrections as :
Ecorrected = (Euncorrected – Eoffset) x Crel(η,p’’T) x Cabs(p’T)

Where p’’T is the jet pT corrected for offset, and p’T is corrected 
for offset and η dependence (Relative corr).



Offset correction

 Measure noise with Zero Bias trigger, with Minimum Bias trigger vetoed 
(MinBias requires coincidence in Beam Scintillating counters, indicating pp 
interaction)

 Measure pileup – select MinBias events in early data (most events 0,1 int.)
 Eoffset -- average calorimeter energy summed in a cone of radius R=0.5 at a 

given η   -- Offset from noise is below 400 MeV in energy
 Offset from one pile-up event: Up to 7 GeV in energy
 Probability of pile-up in 2010 data typically ~50%  
 correction is small -- not yet being  applied on CMS jets

27

Noise offset

Pileup offset



Relative Correction from Dijet pT balance

 Require at least 2 jets, one in 
central region (Tag)

 ∆φ>2.7
 Veto 3rd jet (pT3rd/pTdijet<0.2)

 Measure Balance variable B in 
bins of pT(dijet) and η

 <B> in each bin is used to 
construct r
 Measure of relative response

28



Relative response in η

 Same dijet balance is applied to simulation
 Good agreement Data/MC for |η|<2
 Calorimeter transition

 Barrel to endcap at |η|=1.3
 Endcap to forward at |η|=3

29



Compare different CMS jets

 JPT and PF jets – rely on tracking with calorimetry –
response reflects tracking detector coverage as well 
as calorimeter
 Steep falloff in track efficiency and resolution for |η|>2, 

none for |η|>2.5
30



Relative JEC : Data/MC

31



Absolute Jet Energy Correction at CMS

 Goal – want calorimeter 
energy response to a particle 
jet to be 1 and independent of 
pT
 Absolute Jet Energy Correction

 When combined with offset 
and relative corrections, this 
is all that is needed for most 
analyses

 Use photon+jet events
 γ+jet balance
 MPF 

 Start with isolated photon, 
pt>15 GeV, in barrel region 
(|η|<1.3), + 1 barrel jet
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Absolute Correction from Photon + jet
 pT balance in back-to-back γ+jet

events
 γ is the reference, test response pT/pT

γ

33

•Compare data, simulation to 
true from MC
•Bias due to soft veto on 2nd

jet
•D0 – developed MPF method
•Missing ET Projection 
Fraction – uses MET to 
measure the balance, less 
sensitive to QCD radiation 



Jet Response from MPF in γ+jet

 Basics of MPF (Missing Momentum Fraction; developed at D0)

 RMPF is assigned as the response of the recoil jet 
 Advantage of MPF:  Low sensitivity to extra radiation

 Smaller error bars: Widths of distributions are narrower  fewer fluctuations from the 
impact of extra radiation

 Smaller bias wrt MC-truth than pT
jet/pT

γ for current very loose cuts on extra radiation
 Helps to fully exploit the accuracy of PF method

 MPF method demonstrates the accuracy of JES for different types of jets more 
clearly than  γ-jet balancing method does
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MPF at CMS

γ+jet  MPF
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Absolute Correction Factors

 Absolute jet energy correction factors Cabs derived 
from simulation for CaloJets, PF Jets, JPT jets, at 7 
TeV, as a function of corrected jet pT
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Note large correction 
factors at low pT for 
CaloJets – due to 
non-compensation of 
CMS calorimeters



Correcting Simulated Jets

 Derive corrections for Monte Carlo jets – match 
reconstructed jets to MC-generator level jets

 In CMS, first three levels are put together in one 
correction (offset, relative, absolute)

Calojets JPT Jets PF Jets
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Jet Corrections/Calibrations from Tevatron

 Mature Tevatron experiments have sophisticated jet 
correction algorithms
 Use some of the same that I showed for CMS

 I will show some examples
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Multiple Interactions (MI) at the Tevatron

 Need to know how many interactions 
there were:
 # of z-vertices ~ # of interactions

 Throw random cones in Minimum Bias 
events
 Determine average ET per cone, e.g. 

CDF: 1 GeV for R=0.7

LHCTeV

40%

20%
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Relative Corrections

 Mapping out cracks and 
response of calorimeter

 Central at ~1 by definition
 D0:

 Response similar in central and 
forward

 Two rather large cracks
 CDF:

 Response of forward better 
than of central

 Three smaller cracks
 Difficulties:

 depends on ET
 Can be different for data and 

MC

Cracks
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Calibration Peaks from W’s and Z’s

 Would like to use W,Z for 
calibration – same mass scale 
as Higgs

 Difficult to see inclusive decays 
of W’s and Z’s to jets
 Small signal on huge background

 Two best opportunities:
 W in top quark decays
 Z in bb decay mode UA2, again

CDF WW/WZ 
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Jet Energy Scale Uncertainties

 Uncertainty on Jet Energy Scale determines how well you can measure 
mass (of W, H, new resonance, etc) – extremely important to reduce, 
and understand

 CDF and DØ achieve similar uncertainties
 CMS – 10% based on Monte Carlo studies – initial data validates that 

this is conservative  Will improve with more data



Summary

 I’ve tried to show aspects of calibration of 
calorimeters at many levels
 detector components

 Testbeam, in-situ

 Single-particle
 Physics objects

 Using calorimeter information
 Jet construction algorithms

 Corrections at the physics level
 It comes back to how the detector was designed and built
 Important to physics results!
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Thanks for your attention and participation!!  
Enjoy the rest of the summer school!!
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Extra slides
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Multiple pp Interactions

 Overlapping interactions can overlap the jet
 Number of extra interactions depends on luminosity

 LHC:
 Low lumi (L=1x1033 cm-2s-1):   <N>=2.3
 High lumi (L= 1x1034 cm-2s-1): <N>=23

 Tevatron:
 L= 2x1032 cm-2s-1: <N>=6

Offset depending on number of interactions
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 Additionally, use W→jj mass resonance (Mjj) to 
measure the jet energy scale (JES)  uncertainty

In-situ Measurement of JES

Mjj

Measurement of  JES scales directly with data statistics

2D fit of  the invariant 
mass of  the non-b-jets

and the top mass: 

JES∝ M(jj)- 80.4 GeV/c2
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 Fit for ratio of JES in data to JES in MC

 Constrain JES to 2% using 166 events

CDF (1 fb-1):    δJES = 0.99 ± 0.02
DØ (0.3 fb-1):   δJES = 0.99 ± 0.03

W→jj Calibration in Top Events

η(jet)
At LHC will have 45,000 top events/month!
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Streamlined Seedless Algorithm
 Data in form of 4 vectors in (η,ϕ) 

 Lay down grid of cells (~ calorimeter cells) and 
put trial cone at center of each cell

 Calculate the centroid of each trial cone

 If centroid is outside cell, remove that trial cone 
from analysis, otherwise iterate as before

 Approximates looking everywhere; converges 
rapidly

 Split/Merge as before
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Corrections from Particle Jet to Parton

 Underlying event (UE) and Out-of-cone (OOC) 
energy
 Only used if parton energy is wanted
 Requires MC modeling of UE and OOC

 Differences are taken as systematic uncertainty



52

Out of Cone Energy (OOC)

 Out-of-Cone Energy:
 Original parton energy that escapes the cone

 E.g. due to gluon radiation

 Jet shape in MC must describe data:
 measure energy flow in annuli around jet

 Differences between data and MC
 Lead to rather large systematic uncertainty

Data
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Underlying Event

 Consists of:
 “beam-beam remnants”: energy from interaction of 

spectator partons
 “Initial state radiation”: energy radiated off hard process 

before main interaction
53
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Measuring the Underlying Event

Charged Particle Density
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