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e Using calorimeter information

> Calibration

> Complementarity of tracking and calorimetry
e Reconstruction of jets

> Algorithms
> Jet Energy Corrections
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Signal
Response

Injected Energy Channel number

Goal : uniform and known response to a given calorimeter signal

For example, signal (charge) from detector is in pC, digitized to ADC counts
> want linear response
> channel-to-channel differences : leakage, upstream material, electronics

Calibrations:
> Relative calibration normalizes the response between all channels
> Absolute calibration translates it to energy units (from ADC counts),
How-to : testbeam, electronics calibration, in-situ, simulation
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e Component calibration
> For example, all PMT’s are tested standalone

e Testbeam — operate detector (or part of) in a known-
energy, known-species beam

> In addition to R&D for new detectors, provide a testbench
for the final modules of the calorimeter

e In-situ calibration
> Pulse detector with known energy, measure response
» Cosmic muons, single particles
e Physics object calibration
> “tag and probe”, dijet balance, photon+jet balance, W in top

events 4
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e Example — PMT’s for CMS
HCAL (HF)

> Test station — dark box, laser input

> Individual testing, relative
calibration

> PMT'’s characterized, data put into
database for later calibration input:

> Double-pulse linearity,

Gain vs HV

Single photoelectron spectrum
X-Y scan (spatial uniformity)
Lifetime, pulse width, rise time

Transit time and spread
Anode dark current

Relative gain coupled with
cathode sensitivity

> Pulse linearity
> Quiality control decision

e All (or as many as possible)
components of detector are
calibrated long before they are
Integrated into detector
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e Example: inject known-energy pulse (eg from radioactive
source or laser), then normalize readout of all channels

e Example: Atlas and CMS -- similar methods:
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e Use muons from cosmic rays, testbeam, or physics events
> Wil give MIP response Iin calorimeter cell

> Equalize channel-to-channel response

*CDF:

Number of Muons
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*select muons from J/y and W
speak in HAD calo: =2 GeV (in
CDF)

*Check time stability
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e MIP peak: : -
> CDF - 300 MeV Min. ion.
peak

e /> ee peak:

> Set absolute EM scale in central
and endcap 00504 06 08 T 12 T4 ie T

EM Energy /GeV
e E/p for electrons

> After having calibrated p and g %28 SN
material, see response in E $ o Zee CZ:t::I:PZ; ra
R aheccec= Ao
B S S ST T S L + J

1450 1500 1550 1600 1650 1700 1750 1800 1850
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e Single particle response:

450 1

> Measure with test beam =
> In situ: o
> Select “isolated” tracks and  x.
measure energy in tower -
behind them of
5> Tune simulation to describe """ " " 7 " Ercen”

E/p distributions at each p «
(use T1/p/K average mixture.

iIn MC)
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= 1 : o W—evMC
w 1 Y s} electrons - W- evData
0.8 -' : s Jhp—e'e MC
] i s+ Jhp— e'e Data
06 ___c._ Single track data . 108 | ,H. i RIS enatensis
i Single track MC - -, el
“r . the ettt
[ s Minimum bias data ]  paatts
r 095 |
ozt In-situ Minimum bias MC :
0 . . . ’ %% 20 40 60
1 " &D;:Ge'u‘;-:j p (GeV/c)
_.:._"“ 1 E ' = . . ..
= o b i b & Typlcal jet Compos!tlon:
8 ; -60% charged particles
os [ test beam . -10% protons
oa | i -90% pions
o el e -30% neutral pions (—yy)
ot s Test beam MC - (EM response)
N | | i
1 10 iGevic) -10% other (neutrons,...)

e MC models
> Hadron response at low p+ (in situ data) and high p- (test beam data)
> lectron response
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«10' _CMS preliminary Data''s = T TeV

o
=

e Startup calibration based on 10 3 05 CCAL Barrel
years of test beam and cosmic g o) 1 o5 o080
ray pre-calibration, n° calibration e
e Precision of startup calibration w0 start-up
> ECAL Barrel 0.5 - 2.2% . 0.31 nb~
> 1.2% in central region T HO P P |
> ECAL Endcap 5% vy Invariant mass (Ge\/e®)

> Target with 10/pb: 0.5% EB, 1-2% in . z10' CMS preliminary Data\s = 7 TeV

FE é 4~ ECAL Barrel o= B.0%
. . . o 33 SIE,, =0.44
e Calibration validated by S \‘W
observation of ©° and n >vyy e .y
) 1: start-up
0.31 nb™
0.5

03 04 05 06 07 08 _
vy Invarniant mass (Ge\/c™)
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Single-particle response in CMS

e Compare response of isolated tracks with low ECAL eneryg in
MinBias events with single pions from Monte Carlo

n JAE

T T T T 1: T T T T T
i 1E- ONSPrlininary - ' Barrel - E 1 OMSPrlimnayy - L Endcap -
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Fo.sr- g foe
v 0.TE ——— - v 0.7 -
'D.Ei ‘-m.fH ’U‘EE : ,_:_EI:
: 5 ey
0.5(s 0.5 —pt-
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0-11 T TR PR T et ﬂ,1'_r| L " TR L L
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: . 14— : : : :
2 "F cms Proliminary £ b OMsPeimney . Endcap |
E 1'35_.“E;? TeV lrﬁB-‘* nb—f'_' E Barrﬂl N - 13§ Va=T7 TaV |1nl=5.4 nh“
& 1.2 | : 8 12— i
= B 11
-'g 115 I = " E lrlj."".'_' | " ) &
E 15._4..'|iii7"'_"—' - | . PR e L it L] el [ o 1 i-.-=
e e e L 0.9¢ | |
: 75 = 36 5 10 15 20 25 30
1 2 %Erm (GeVic) Py (GEVIC)

Mean response in Data and MC agree within 2-3% in barrel region
In endcap, simulation is lower than data (~4%)
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Jets from Collisions Usiverste
e QCD Interactions - Jets : — P
e Types of Jets ". A

> Parton level — quarks/gluons
from initial collision

> Hadron level — fragmentation,
decay, hadronization produce
particles

> Experimental — what we see
In the calorimeter, and how
we interpret it
e Goal — take detector
Information, reconstruct 7
parton level physics

“calorimeter jet

aul

“particle jet”

“parton jet”
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Graphics from
Kerstin Perez,
ISSP 2009

e Procedure to turn recorded detector info into jets
> Or, looking at it from the other way, turn partons into jets

e Constraints:
> Infrared and collinear safe (see next slide)
> Invariant under boost (important for hadron colliders)
> Independent of level (parton, hadron, calorimeter) and detector

> Easy to implement and use (computer resources), calibrate 14
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e [nfrared safe — same
jets even if one of the
partons emits a soft
gluon

e Collinear safe — same
jets even If outgoing
partons split

(L) (1L.)

These situations would
have the same jets

N
AZ

15
Graphics from Kerstin Perez, ISSP 2009
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e Choice of jet algorithms is an involved topic —
theorists and experimentalists have been working
together for years to find the perfect scheme

> True to parton-level
> True to experimental (detector) level
> Taking into account detector effects, pileup, etc.

e There are many possible algorithms to choose from —
we won'’t cover them all

> Here are examples from CMS: Anti-kT, SISCone and kT
jet algorithms:

> Then, generator jets, calorimeter jets, calorimeter+track, and
particle-flow jets for these jet algorithms

16
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e Cone (traditional)
> clusters nearby in angular space
> Problem : seeded - introduces bias especially with pileup

> Problem : needs merging/overlap scheme, which every
experiment implements differently
> Difficult to compare, feedback to theorists
e If you don't seed the jets, takes N 2N time to find jets
among N particles (“unseeded”)

> unusable at hadron level (think of “simple” event with 100
particles...)

> reduce to N2 In(N) time — SISCone algorithm

17
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o KT

> Clusters nearby in momentum space

> Based on JADE or Durham algorithm -- exclusive iterative
pairwise clustering scheme

> JADE algorithm uses test variable yij , and a combination procedure.
> Test if objects i and j should be combined according to whether yij < ycut.
> Also, consider next pair to combine (smallest value of vyij) .

> Original JADE y; = M#/Q% where Q is the hard scale (i.e. the centre-of-
mass in e+e- annihilation) and M2 ; = 2EE(1 - cos 6;) , ( invariant mass-
squared)

> Repeated until no objects can be combined further

> Problem with JADE — not IR, collinear safe
» Durham mod -- consists of replacing M#; in test variable by k4,

> K = 2min{E;,Ej}2(1 — cos 0;) -- relative transverse momentum-
squared of i and j. 18
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e Advantages of KT
> Jet identification is unique — no merge/split stage

e Disadvantage of KT

> Resulting jets are more amorphous, energy calibration
difficult (subtraction for UE?), and analysis can be very
computer intensive (time grows like N3)

e Anti-kT

e Like KT, only uses 1/pT as the distance parameter
e Improves performance with pileup

19
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e See this very nice webpage
http://www.Ipthe.jussieu.fr/~salam/|et-quality/

> By M. Cacciari, J. Rojo, G.P. Salam, and G. Soyez
arxiv:0810.1304

> You choose two jet algorithms, set the parameters, and it
compares dijet mass distributions with your conditions

Yk “CIA © anti-ke © SISCone ~ C/A-filt

Your input — Q@ L=iR=07Lx] [aR
twice for ':ﬂr=i QWlom 7 x2
comparison rebin =2
qq g9
mass = 2000~

plleup: “ none — 005 025 mbev

subtraction:
20
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qq, M = 2000 GeV

qq, M = 2000 GeV

0.08 -ktl-_[:-]?-""' y 0.08 —F———— . v
| kg, R=0. 1 anti-k,, R=0.7 z
—_— B ' 1&
o 008 | U012 =274 CeV aE ~ 006 | G012 =261 GeY |
i ~ g oo 5
Without < - B |2
: T 004 - - i
Pileup = T 00T ]
— s
= =
0.02 I 7 — 002 .
[:' = D b
1900 2000 2100 1900 2000 2100
dijet mass [GeV] dijet mass [GeV]
qq, M = 2000 GeV qq, M = 2000 GeV
0.08 —r———T———17, 008 T,
|k, R=0.7 IE: | _antidk, R=07 13
W _ ® w = =
With o 0.08 F O*f=|:J.1z—"5'111-9_53‘:‘*’ur o n 008 | 012 51'9_535’# ok
> PU =026 mb % = PU =025 mb |B
. _E _E
plleuD 2 004 . = 004 F .
- e
Z Z
— 002 F — = 0.02
|:| 1 TR SR SR A (R R R |:|
1900 2000 2100 1900 2000 2100 21

dijet mass [GeV] dijet mass [GeV]
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e Algorithms often designed from parton point of view

e From the detector point of view

> What information goes into a jet?
»> Calorimeter, tracking
> “Energy flow”

> Jet corrections, systematics
> Integration into experimental software.

22
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e CMS has chosen the anti-kT algorithm, with R=0.5,
as the default. Then, 4 types of jets reconstructed:

Calorimeter Jets

Jets clustered from
ECAL and HCAL
deposits (Calo Towers)

Accordingly:
Calo MET

Particle Flow Jets (PF)

Cluster Particle Flow objects:

Unique list of calibrated

particles “a la Generator Level”

Accordingly:

PF MET

F. Beaudette
01/22.7 17:15

Jet-Plus-Track Jets (JPT)

Subtract average calorimeter
response from CaloJet and
replace it with the track

measurement
Accordingly:

Te MET

Reconstructed from tracks of
charged particles, independent
from calorimetric jet measurements

From Joanna Weng
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e Combines info from all subdetectors to produce particles
> Charged hadrons — from tracks

> Photons, neutral hadrons from ECAL, HCAL energy
> Clusters with no tracks
> Neutral particle overlapping with charged particles — subtract charged pt from
cluster, remaining is neutral particle

e jets from resulting particles — charged hadrons and y are 90% of jet energy

312 e 511 - 2
g | CMS Preliminary 2010 f:'"-'L R=0.5 5 CMS Preliminary 2010  Anlik, R=05
i NS=7TeV,DATA B[ >25GaVic WL VE=TTeV,MC F > 25 GeVie
'E 1- E 1-
- r =3 I
T T T |
§ 0.8 é 0.8
E (5]
s E .
E ﬂﬁ c ﬂ.ﬁ
2 PFT-10-002 E

0.4 0.4

02 | 0.2

0 -4 2 0 2 4 0 - n 2 4
PFJetn W Charged Hadrons [ Electrons PFJetn
B FPhotons B HF Hadrons 24

B HNeutral Hadrons B HF EM particles
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e Determine the energy of the partons produced in the
hard scattering process

e Corrections needed for:

> Detector effects:
> Non-linearity of calorimeter
> Response to hadrons
> Poorly-instrumented or non-functional regions

> Physics effects:
> Initial and final state radiation
> Hadronization
> Underlying event
> Parton flavor

e Need corrections for data and MC, validate in both

25
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e Use CMS as an example, also show others
> CMS uses factorized approach

Requlred Corrections Optional Corrections
He»:: I:|1.|¢ted i
nns ’- mﬂF Flavnr UE J[Pﬂrtnn][ cal.llt:t:tm
g Relative: Correct to Ahsnlute Correct
make calorimeter absolut energy scale
response uniform in n In-situ method:
In-situ method: Photon+jet pt balance
L Dijet pT balance )L MPF method

A

- apply Jet Corrections as :
Ecorrected = (Euncorrected _ Eoffset) X Crel(n’p”T) X Cabs(p,T)

Where p”; is the jet pT corrected for offset, and p’; is corrected
for offset and n dependence (Relative corr). 20
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TTTT ||||I||||I||||||||||||_ . w N

10 " CMIS preliminary 2010 . m!“!m““’ E!“S Z"‘i !
Inimum oias data \H

[Ns=7TeV Noise-only MC

o Zero Bias data

Pileup offset

s s <—— Noise offset
Measure noise with Zero Bias trigger, with Minimum Bias trigger vetoed
(MinBias requires coincidence in Beam Scintillating counters, indicating pp
Interaction)

Measure pileup — select MinBias events in early data (most events 0,1 int.)

E set - @verage calorimeter energy summed in a cone of radius R=0.5 at a
given n -- Offset from noise is below 400 MeV in energy

Offset from one pile-up event: Up to 7 GeV in energy
Probability of pile-up in 2010 data typically ~50% 97
correction is small -- not vet beina applied on CMS iets
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¢ o Ry,
Barrel Jet pdijct a p!t;fu S pgj-:lurt'.x!
i 2 |

] » n‘jr a rrel b

probe harrel
P — P
B="o 4

.................................................... dijet
B
L5 -
J;ru'uhﬁ: e &
: F gt S

Probedetl "~ 2_-g-=

2] ' ' ' I ' ' ' ' '

Require at least 2 jets, one in 5 200l v amemion anehs
central region (Tag) W Calolets 1
i 18 < dijet p_ = 31 Ge"..'-_'
A(I)>2.7 - 03<hl <06
. T 200~ CMS Prellminary |
Veto 3" jet (pT3d/pTdiet<Q.2) i ]
. _ 100F _
Measure Balance variable B in i ]
bins of pT(dijet) and n i ]

. . . |

<B> in each bin is used to 03 0 5
Balance

constructr
> Measure of relative response

28
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2 1 | I | | | 1 | | 1 | | | I |
3 el v Calo.
S anti-k, A = 0.5
) Raw CaloJets e
L 40 = dijel p_ < 70 GeV T
C 15— s - _
) 8 g ke o
= W
< i sl _
s o :
R e SRR
.
TME-10-003
—=— CMS Simulation
0.5 CMS Prellminary
| —=— Data(71 nx') i
1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 I 1 1 1 1
0 1 2 3 JTME-14-003 5

|y |
e Same dijet balance is applied to simulation
e Good agreement Data/MC for |n|<2
e Calorimeter transition
> Barrel to endcap at |n|=1.3
> Endcap to forward at |n|=3

29
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Relative Response

2 T | T T T T I T T T 1T T T T T T T T T G.) 1 4 T LI L L N Y L B B | L T T T T .) 1 4 T T | T | L T UL
- s =7 TeV 12 - \Js =7 Tev 2 - \|'_§:?Tev
anti-k; R=05 . 8 B anti-k; R=05 . g_ - anti-k; R=05 oMs pretiminary i
Raw CaloJets - 19 12+ Raw JPTJets CMS Preliminary 7} 9 ; 2‘_ Raw PFJets 7
| 40 <dijet p,<70GevV , % o= L 88<dietp <60GeV - e 40 < dijet p_ <63 GeV ]
1.5 T P i ;
B - ‘¢‘_' 1> ; L
I _E 1 m=as S g T g 13 C . b
ﬁ_ﬂ_{" C% T . i o 2 1= ';#HI&""'““'"““““““'“;"‘ﬁﬁf_‘l-:----—
| —+ —0- | = - —e— —o— ! i
1 = _ﬁ.---------_-;_ e — dj_ o _Ej__T_ :ﬁ:_._ = _e']_ -
et - —HL-F o0
0.8 .- 4#_ _
: : i - ] 0.8 —
T —&— CMS Simulation 7 - —B— CMS Simulation 4 | B CMS Simulation 1
0.5~ CMS Prellminary — 0.6 _| .
| —e— Data(71 nb’) | | —e— Data(20 nb') ] L —e— Dlata(QO nb IJ | |
AN T T T TN T AN N T T T N N N NN M SN NN SO MO AR R U N R T T N (S TN T RO TN N N N M O 06 11 EE— L 11 L1 1| L1 1|
0 1 2 3 4 E 0 1 2 3 4 5 0 1 2 3 4 | I5
In | Inl M

e JPT and PF jets — rely on tracking with calorimetry —
response reflects tracking detector coverage as well
as calorimeter

> Steep falloff in track efficiency and resolution for |n>2,

none for |n|>2.5
30



Relative JEC : Data/MC M

i — LI N N U N N N N B N N Y N N N Y Y BN B B | TY
(=] L i
@ 2_' T I*-IJ'EI:I?ITIE\:'I T Calo Jet ﬁ 4l Corrected CaloJets Calo Jet - VA
§_ B anti-k, R =0.5 B = ) i —-—g;:g:;:;nm-;?:geﬁ | =
@D i Raw CaloJets e i E e il e i iy TME-10-003
e | gl 40=<dietp <70Gev " a7t B __m__ = 120 < dijel p™ < 150 eV
2 T} =7 ot g 1oL T :
® [ Sl ] a | . ]
g | e — \ i —
Uil e ===
- JIME-10-003 | ; j |
- —=— CMS Simulation g i t e |
0'5__ = Data(71 nb) e Fm“mmaw_— I cuisrlc;lx;lnary |
L PR [N TN T SN TN (NN TN TN TN S NN TN NN SO SO (NN SO SN WA [ T T T N R N R el nlll | T S T T SN N SN T N |
0 1 2 3  Ime-u-003 5 D'BCI 1 2 3 4 5
B ‘ Inl
. GDDd agreement up tD Inl =2 C T T T T | T T T T | T T T T | T T T T | T T T T
g Relative response i_n data_ ~10% % 1 E;@%ﬁjﬁ@ JME-10-003 -
higher compared to simulation for |n| > 2 = T b :;L::Sg oy )
tﬁ |- —an FH < dijet 0y = 120 Gev -
2y = 120 < dijet p{™ < 150 Gev
] E T[] uncerainty T
=> Data/MC close to unity 5 1.2 N
after the residual correction P
=> Data/MC deviations are covered :::};"’ -
by conservative n-dependent ' _:E_
systematic uncertainty of 2% x |n| - ‘ T e
L CMS Preliminary ?
B e )k , | JME-1O-003)
D'B{} 1 2 3 4 5
Inl

JOANNA WENG
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_ jet

e Goal — want calorimeter

energy response to a particle
jet to be 1 and independent of
pT

> Absolute Jet Energy Correction
When combined with offset
and relative corrections, this
Is all that is needed for most
analyses

Use photon+jet events
> y+jet balance
> MPF

Start with isolated photon,
pt>15 GeV, In barrel region
(Inl<1.3). + 1 barrel |et
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Absolute Correction from Photon + jet Univegsiry
e pT balance in back-to-back y+jet b
events : !
- vy is the reference, test response p./p" q N
p
A
£, « + = .= sCompare data, simulation to
u.a;— o e . : Tl - true from MC
06 - Response vs p;'  PE Jet _f eBias due to soft veto on 2"d
1 et
: " emewe | - *DO0 — developed MPF method
T aerosorme Lo menemene | - *Missing ET Projection
of -~ Fraction — uses MET to
S0 rmeas.oor - measure the balance, less
535_ oty t T sensitive to QCD radiation
20 30 40 50 6070 100 33

Photon P, [GeV/cl
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e Basics of MPF (Missing Momentum Fraction; developed at DO)

— recoil 6’

¢ Ideally:  prl + Pt

= — -
— recoil miss

= Add in the detector: R P + Ryecoil D1 = —F7

miss — 7Y
t‘lrl F,

ek

% Solving: Ryecoil/ B~ =1+ = Rmpr

> Rypr IS assigned as the response of the recoil jet

e Advantage of MPF: Low sensitivity to extra radiation

> Smaller error bars: Widths of distributions are narrower - fewer fluctuations from the
impact of extra radiation

> Smaller bias wrt MC-truth than p{°%p; for current very loose cuts on extra radiation
> Helps to fully exploit the accuracy of PF method

e MPF method demonstrates the accuracy of JES for different types of jets more
clearly than vy-jet balancing method does



MPF at CMS
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Response
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e Absolute jet energy correction factors C_,. derived
from simulation for CaloJets, PF Jets, JPT jets, at 7/
TeV, as a function of corrected jet pT

| -
o
O 2 CMS Simulation —
o L
LL i — CaloJsts
% 1.8 ----- PFJets —
= - —-- JPTJets
U -
L 165 antik; R=05 ]
L .
O - Absolute Correction
O i
= 1.4
O L
QO L
C L
A .2_—
© L
ﬁ ™ 00 e, TR ss s s e e AR S A R RS NS S gy
1 L -
| 1 L L L L L 11 | 1 L L L L
10 20 30 100 200

Corrected Jet P, (GeV)

Note large correction
factors at low pT for
CaloJets — due to
non-compensation of
CMS calorimeters
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Correcting Simulated Jets
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Jet Energy Correction Factor

Derive corrections for Monte Carlo jets — match
reconstructed jets to MC-generator level jets

In CMS, first three levels are put together in one
correction (offset, relative, absolute)

Calojets JPT Jets PF Jets

2_5 T T 1 L T T T T T T T ‘5 2_5 T T T ] T T L T 1 T T L | T ‘5 2_5 1 T T T | L T 1 T T L T
: — raw p_ =30 GeV anti-k, R=0.5 : E L ——Tawp = 30 GeV anfi-k- =05 i E L ——rawp = 30 GeV anti-k; A=0.5 i
R Y p. =50 GeV CaloJets L [ Taw p, =50 GeV JPTJets 1 v [ - raw p_ =50 GeV PFJets

5 | _rawp_=100GeV Total Comrection | _5 ol ——-rawp =100GeV Total Correction | _5 ol ——-1awp =100GeV Total Correction _|
~ N, - L o | a
.f'f \ / \ 8 L 8 L
/ Y Pl il
— A | = = = |
i I 2\ ] 8 I 8 I

150 /7 7 N\, H = 15F 4 = 15F .
AR A N = A A M 12
L[ A le A A 18 | ]
Y g S [} R | | FF A | . -
= f 1 ..'-, b= ) \ .I .l: / - o
i CMS Simulation i i CMS Simulation 1 i CMS Simulation i
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e Mature Tevatron experiments have sophisticated jet
correction algorithms

> Use some of the same that | showed for CMS
e | will show some examples
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31| po 1.046 + 0.003

Need to know how many interactions
there were:

p1 0.01506 + 0.00012

> # of z-vertices ~ # of interactions

Throw random cones in Minimum Bias
events

> Determine average E; per cone, e.g.
CDF: 1 GeV for R=0.7 % 10 20 30 40 50 60 70 80 90, 100

< Number of Vertices >

Inst. Luminosity (1E30 cm°s™)

s
8 141 S 100
0 0.01793 = 0.001496 - -
= P § [ |—E, =50 GeV
I\. pi 1.056 = 0.001324 8 80 B
O ‘|°: __ — ET,jel=200 GeV
n 10} o _
S— @D L
9, ° -
o g 40% -
E R — E BN S S S S S .-
~ 6 - 40 B
uf 20% -
S 4 - s . - - - -
2_ 0_ |III|IIII|IIII|IIII|IIII
L 0 30 35 40 45 50
0 Number of Interactions

0O 1 2 3 4 5 6 7 8
Number of vertices
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e Central at ~1 by definition

B = 256 GeV

D@ Run Il preliminary |

Mapping out cracks and
response of calorimeter

I, l<05
t
I, l<05
. Bt =100 Ge
I, l<05
: =250 Ge
In_|<0.5

B

——E. =500Ge

Rt (ndel)m|et(mdet|<o'5)

DO:

> Response similar in central and
forward

> Two rather large cracks — crfcks  oeghrcprlonbin bt

CDF: (55 < PI°<75 GeVic
> Response of forward better "
R

than of central 110

> Three smaller cracks 1f
Difficulties: g: §
> depends on E; o |
> Can be different for data and 05 |

MC 0.5 b
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e Would like to use W,Z for 8 “Deaom)
calibration — same mass scale ¥ | e v
as Higgs - — Fi
e Difficult to see inclusive decays | CDF WW/WZ

of W's and Z’s to jets
> Small signal on huge background

e Two best opportunities:
> W in top quark decays

500!

: 0 100 150 200
> Zin bb decay mode M, GeVic

'
O [ b) W
N 600 \ Z
g 400 N
8
2 2001
a | = = e
Sl

= T -200

3 A AN B . . ,

€ 60 80 100 120 60 80 100 120 140

mi; (GeV) my: (GeV) 41
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Uncertainties on JES
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Jet Energy Scale Uncertainties

Quadratic sum of all contributions

o]

Absolute jet energy scale
Out-of-Cone
Relative - 0.2<|n|<0.6

Underlying Event

50 100 150 200 250 300 350 400 450 500
p; " (GeVic)
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L L O L LY L .'...'...l..L.'..'... JULIR IR LI LI DL

DQ Run | prellmlnary
i --Rqone— Q 7, Tl _— 0. 0 :

B E—Total

- 8h owering -
|  Offset mn

Response§ e

EUCoT (GeV)

Jet

Uncertainty on Jet Energy Scale determines how well you can measure

mass (of W, H, new resonance, etc) —

and understand

CDF and D@ achieve similar uncertainties
CMS - 10% based on Monte Carlo studies —

extremely important to reduce,

Initial data validates that
this is conservative ->Will improve with more data
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e |'ve tried to show aspects of calibration of
calorimeters at many levels

> detector components
> Testbeam, in-situ

> Single-particle
> Physics objects

e Using calorimeter information
> Jet construction algorithms

e Corrections at the physics level
> It comes back to how the detector was designed and built
> Important to physics resulits!
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Thanks for your attention and participation!!
Enjoy the rest of the summer school!!
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Backup : Anti Kt "1) bt

_ &Rfj
d.ij =mm( ka ,3) 722

ﬁRij — (ﬁy — ?f’j) T (‘;bt — qu)z

4 New development in the jet clustering theory.
4 Tends to cluster the energy around the hardest particles.
» essentially behaves like a cone algorithm giving perfectly round jet areas
4 Belongs to the “kt” family.
» merging of 4-vector pairs based on transverse momentum weighted
distance in y-p plane.
» the clustering terminates when the weighted distance between
particles is greater than a specific value R (resolution parameter).
» the quantity R is of the order of unity.
4 infrared and collinear safe (suitable for theory calculations).

ICHE!
JOANMA WENG Pagin LoiE
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Multiple pp Interactions .
UNIVERSITY
o 2z 0.3_ E
® -
g 0254 LHC: L=1x 10°* cm?s™" <N>=2.3
- ] LHC: L=1x 10> cms™:<N>=23
i TeV: L=2x 10° cms™":<N>=6
015

0.1 :

0.05:

0 5 10 15 20 25 30 35 40 45 50
Number of Interactions

e Overlapping interactions can overlap the jet

e Number of extra interactions depends on luminosity
> LHC:
> Low lumi (L=1x1033 cm=2?s1): <N>=2.3
> High lumi (L= 1x1034 cm2s1): <N>=23
> Tevatron:
> L=2x10%% cm2s1: <N>=6

Offset depending on number of interactions 47
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e Additionally, use W—jj mass resonance (M;) to
measure the jet energy scale (JES) uncertalnty

2D fit of the invariant
mass of the non-b-jets

and the top mass:

JESo M(jj)- 80.4 GeV/c?

I Measurement of JES scales directly with data statistic'
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W—|] Calibration in Top Events

e | Fit for ratio of JES In data to JES in MC
CDF (1 fb1): &,ec=0.99 + 0.02

D@ (0.3 fb1): §,.= 0.99 + 0.03

e Constrain JES to 2% using 166 events

CDF Preliminary 955 pb ™'

—

) Aln L=BD
uJ B
= L
g0 [ S — — i . A SRS S i
L : .-“nlr: L=
1‘1 Aln L0
1“\“‘ :
1k NN ]
0,95 -t e
160 165 170 175 180

2
M, (GeV/c)
At LHC will have 45,000 top events/month!

CDF Run Il Preliminary (955 pb'1)

N o
o o
T — T T

N
o
———

m, Gev/c?

10UV

100

50

KS 0.10

50 100 150
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Monte Carlo
mean: 77.7 GeV/c?
RMS: 19.0 GeV/c?

Data
mean: 79.7 GeV/c
RMS: 20.5 GeV/c®

2

mtt (M_=175)
Non-W QCD
B ZZ, WW, WZ
Il Single Top
BN Wec+ 3p
Wet +2p
B W bb + 2p
W 4p

—— Data

Ev

—s— Monte Carlo

—=— Data
| —
e
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Streamlined Seedless Algorithm o=

e Data in form of 4 vectors in (n,¢)

e Lay down grid of cells (~ calorimeter cells) and
put trial cone at center of each cell

e Calculate the centroid of each trial cone

e If centroid is outside cell, remove that trial cone
from analysis, otherwise iterate as before

e Approximates looking everywhere; converges
rapidly

e Split/Merge as before
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e Underlying event (UE) and Out-of-cone (OOC)
energy

> Only used if parton energy is wanted

> Requires MC modeling of UE and OOC
> Differences are taken as systematic uncertainty

PT»PCL"“tOR — PT,path'cle — ULk + OOC

o1
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e Out-of-Cone Energy:
> Original parton energy that escapes the cone.
> E.g. due to gluon radiation |

> Jet shape in MC must describe data:
> measure energy flow in annuli around jet

e Differences between data and MC e

_> Lead to rather large systematic uncertainty .| [LI€"™id
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% 0.06 .. q s
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Hard Scattering

. . Inggalssiate Radiation
Hard fﬁ(‘ﬂttﬁ'l’ll’lg Outpoing Parton __J

Imitinl-State Radiation

“Underlving Event”

e Consists of:

> “pbeam-beam remnants”: energy from interaction of
spectator partons

> “Initial state radiation”: energy radiated off hard process

before main interaction
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“Transverse” region
very sensitive to the
“underlying event”!

Leading Jet Direction

pirceutiivil

“Toward-Side” Jet
Ad

“Toward”

ransverse”

Away-Side” Jet

Transverse <PT,,.» (GeVic) in 1 GeV/c bin

Measuring the Underlying Event

“Transverse” PT,, vs PI(charged jet1) I
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