

US LHC Accelerator Research Program

bnl - fnal - lbnl - slac

PS2 Electron-Cloud: Status

LARP CM14 FNAL, April 26–28, 2010

> Miguel A. Furman LBNL mafurman@lbl.gov

- **Team:** M. Furman, M. Venturini, J.-L. Vay, G. Penn, J. Byrd, S. de Santis, R. Secondo (LBNL); M. Pivi, L. Wang, J. Fox, C. Rivetta (SLAC); R. de Maria (BNL).
- CERN contacts: M. Benedikt, G. Rumolo, I. Papaphilippou, F. Zimmermann

Previous results (~CM13)

ecloud build-up:

- ecloud density in field-free regions larger by ~1-10 relative to dipoles
- 1– σ density: (a few)x10¹¹ (a few)x10¹² m⁻³
- LHC50 beam clearly favored over LHC25 in f.f. regions
- There is a generic non-monotonic dependence of ecloud density $\rm n_e$ as a f. of bunch intensity $\rm N_o$
 - n_e is larger at $N_p \sim (1-3)x10^{11}$ than at the higher (nominal) N_p
- Sensitivity to chamber radius in f.f. sections is strongly dependent on N_p
 - weak dependence at nominal N_p

Effects of ecloud on the beam:

- Clear threshold of instability at n_e~0.5x10¹²
 - This value is in the mid-range predicted by the build-up simulations
- Clear beneficial effect of negative chromaticity: increases threshold in n_e
 - And detrimental effect of positive chromaticity
- Simulation variables: spot-checked for numerical stability
- Excellent agreement with HEADTAIL code

Progress since then

Ecloud build-up:

- A few odds and ends (numerical checks, computation of beam neutralization,...)
- Continuing comparisons with FNAL Main Injector
- Effects of ecloud on the beam (work by Marco Venturini):
 - Most of recent effort
 - Numerical model refinements
 - Apply linear theory of TMCI to ecloud instability
 - Applicability is much more restrictive than simulations, but may provide insights
 - Casting ecloud-induced instability allows contact with , and profit from, conventional instability analysis and lore

Model for beam-ecloud interaction (single bunch) as implemented in Warp/POSINST

- Smooth approximation assumed for lattice
- Beam-cloud interaction localized at stations uniformly distributed along lattice

- Beam-cloud interaction is strong-strong, in the quasi-static approximation (beam particles don't move while interacting w/ cloud).
- Gaussian longitudinal charge density
- Electrons confined to 2D transverse slab, with initial uniform density. Same e-density assigned to each station; refreshed after each beam passage
- Electron motion confined to vertical lines (models e⁻ orbit in magnetic field).

Parameters used in simulations

Beam, lattice parameters(*)

~Injection Extraction

,300.011			
Energy	5 GeV	Energy	50 GeV
γ _T	35i	γ_{T}	35i
N _p	5.9(4.2)x10 ¹¹	N _p	5.9(4.2)x10 ¹¹
ν_{x}	13.25	ν_{x}	13.25
ν_{y}	8.2	v_{y}	8.2
v_s	1.2x10 ⁻²	ν_{s}	7.7x10 ⁻⁴
σ_{x}	6 mm	$\sigma_{_{\!X}}$	1.9 mm
σ_{y}	5.7 mm	σ_{y}	1.7 mm
σ_{z}	0.9 m	σ_{z}	0.3 m

(*) These parameters might not be the most recent

Other parameters

Chamber sizes (rectangular)	a=6 cm b=3.5 cm
No. macroelectrons	16k
No. beam macroparticles	>300k(**)
No. long slices	64
Grid size	128*128
No. beam-ecloud stations N _{st}	40(***)

(**) old value=10k

(***) old value=10. Note: new value of N_{st} is >4 stations per $\lambda_{\beta y}$, ie., $_{5}$ well resolved

Simulations identify an instability threshold at $\rho_e \approx (0.5-0.75) \times 10^{12} \text{ m}^{-3}$ for $N_p = 5.9 \times 10^{11}$

- Instability develops for e-cloud density $\rho_e \approx (0.5 \sim 0.75) \times 10^{12} \text{ m}^{-3}$ (at zero chromaticity)
- Large number of macro-protons (>300k) insures numerical stability
- Same e-cloud density assumed at all interaction stations

Thresholds are surprisingly similar at extraction and injection.

Emittance growth correlated with unstable centroid motion

- Exponential growth in amplitude of beam centroid sets in after ~2 ms
- Instability appears to be main drive emittance growth but some emittance growth already apparent at < 2 ms
- NB: simulated instability is seeded by Δy_0 =0.0002 m to "get it going" quickly

Attempt to apply TMCI theory to the determination of instability threshold

 TCMI theory requires a model of wake potential to describe the effect of electrons on beam

Dipole wake potential induced by e-cloud:

$$W_{y}(z,z') = -\frac{eE_{y}(z)}{mc^{2}r_{e}} \frac{L}{\langle y(z')\rangle N_{b}\rho(z')\Delta z}$$

Broad-Band resonator model for e-cloud induced wake

So far attempts to apply TMCI theory to e-cloud have made use of a simplified model of wake potential forcing the wake to be in the form of a BB resonator $W_v=W_v(z-z')$:

$$W_{y}(z-z') \propto e^{\alpha(z-z')/c} \sin\left(\frac{\varpi(z-z')}{c}\right)$$

Example of e-cloud induced wake as calculated from POSINST (z' fixed, vary z).

wake is reminiscent of BB model but in general does not exhibit a simple dependence on (z-z')

-- see next slide

E-cloud induced wake potential is more complex than BB resonator model

- You can't expect W_y to be a function of z–z' because, unlike wakes produced by the chamber, the electron cloud is dynamical
- Indeed, plots of W_y in the (z,z') plane shows that it is a function of z, z' separately rather than z-z'

- •Gaussian proton beam (51 slices)
- •Initially uniform e-density (10¹² m⁻³)

W_y~0 here because of causality

Apply e-cloud induced wake W(z, z') to linear theory for TMCI

- Perevedentsev (ECLOUD'02) generalized TMCI linear theory to include the case of a generic wake W(z,z'), rather than W(z-z')
 - but to the best of our knowledge this theory has never been applied.

Linear analysis for PS2 beam parameters at extraction with assumed e-density $n_e = 10^{12} \, \text{m}^{-3}$: eigenfrequencies of the beam density modes

Normalized current:
$$I = \frac{N_b r_e c}{2\gamma v_y \omega_s} \sim 0.52 \text{ m}^2 \text{ for } N_b = 5.9 \times 10^{11}$$

Conclusions

Ecloud build-up

nothing qualitatively new; previous results seem stable against computational parameter checks

Effects of ecloud on the beam

- We improved the numerical stability of simulations
 - more beam macroparticles
 - more beam-ecloud stations
- PS2 parameters at extraction:
 - Newer results basically confirm preliminary finding reported at CM13. Onset of instability is predicted for e-density right below ~10¹² m⁻³.
 - Instability threshold in n_e at injection comparable to that at extraction.
- We applied the TMCI theory to predict the instability threshold
 - Used a realistic model of e-cloud induced wake potential (computed numerically using POSINST)
 - Model is an improvement over BB resonator wake used in the past
 - The threshold from linear theory is within 50% of value obtained from macroparticle simulations

What's next (pre-Chamonix list)

Ecloud build-up:

- Numerical refinements
- Increase understanding from side-by-side comparisons with Main Injector
- Simulate ecloud in quads and other regions

Ecloud effects on the beam:

- Improve macroparticle simulation, e.g. remove vertical-motion constraint
- Better analysis of macroparticle simulations
 - Compute tunes for all beam slices
 - Apply FFT techniques to connect simulations to more conventional analytic theory (e.g., similar to SPS feedback simulation work; talks by J. Fox, C. Rivetta, J.-L. Vay tomorrow)
- Use updated PS2 parameters
- Make n_e vary from station to station
- Make dn_e/(dxdy) non-trivial (use ecloud build-up code output)
- Improve lattice description (true optics vs. constant focussing)
- Multibunch simulation: 2-3 bunches seems realistic