# Evasion of the helicity selection rule and its implications in heavy quarkonium decays

### Qiang Zhao

Institute of High Energy Physics, CAS

and Theoretical Physics Center for Science Facilities (TPCSF), CAS

zhaoq@ihep.ac.cn

QWG Workshop, Fermi Lab, May 19, 2010

# **Motivations**

- Charmonium decays as a probe for non-perturbative QCD mechanisms
- pQCD helicity selection rule is badly violated in exclusive processes
- Several exisiting puzzles in low-lying vector charmonium decays

# Several well-known puzzles in charmonium decays

- ψ(3770) non-D D decay
- " $\rho\pi$  puzzle" in J/ $\psi$ ,  $\psi' \rightarrow VP$  decay
- Large  $\eta_c \rightarrow VV$  branching ratios
- M1 transition problem in J/ $\psi$ ,  $\psi' \rightarrow \gamma \eta_c$ , ( $\gamma \eta_c'$ )
- Isospin-violating decay of  $\psi' \rightarrow J/\psi \pi^0$ , and  $\psi' \rightarrow h_c \pi^0$
- Could be more ... ...

### Conjecture:

- These puzzles could be related to non-pQCD mechanisms in charmonium decays due to intermediate D meson loops.
- 2) The intermediate meson loop transition could be a mechanism for the evasion of the helicity selection rule.

### Charmonium spectrum



# <u>Outline</u>

- > Introduction to the helicity selection rule
- Long-distance contribution from intermediate hadron loop transitions
  - ψ(3770) non-D D decays
  - "ρπ puzzle"
  - $\chi_{c1} \rightarrow VV$  and  $\chi_{c2} \rightarrow VP$
  - $\eta_c$ ,  $\chi_{c0}$ ,  $h_c \rightarrow$  Baryon + Antibaryon
- > Summary

# Helicity selection rule

According to the perturbative method of QCD, Chernyark and Zitnitsky showed that the asymptotic behavior for some exclusive processes has a power-counting as follows:

$$BR_{J_{c\bar{c}}(\lambda) \to h_1(\lambda_1)h_2(\lambda_2)} \sim \left(\frac{\Lambda_{QCD}^2}{m_c^2}\right)^{|\lambda_1 + \lambda_2| + 2}$$

Chernyark and Zitnitsky, Phys. Rept. 112, 173 (1984); Brodsky and Lepage, PRD24, 2848 (1981).

The QCD leading term will contribute when  $\lambda_1 + \lambda_2 = 0$ , while the next to leading order contribution will be suppressed by a factor of  $\Lambda^2_{\rm QCD}/m_c^2$ 

# Helicity selection rule

An alternative description of this selection rule with the quantum number named "naturalness"

$$\sigma \equiv P(-1)^J$$

The selection rule requires that

$$\sigma^{initial} = \sigma_1 \sigma_2$$

Take the process  $J/\psi \rightarrow VP$  as an example  $(\sigma^{initial} \neq \sigma_1 \sigma_2)$ 

$$\mathcal{M}_{J/\psi(\lambda_{\psi}) \to V(\lambda_{V})P(\lambda_{P})} \propto \epsilon_{\mu\nu\alpha\beta} p_{\psi}^{\mu} \epsilon_{\psi}^{\nu}(p_{\psi}, \lambda_{\psi}) p_{V}^{\alpha} \epsilon_{V}^{*\beta}(p_{V}, \lambda_{V})$$

In the rest frame of initial state, it requires  $\lambda_V=0$  at leading twist accuracy.  $\epsilon_V$  can be approximately expressed as a linear combination of the final state momenta, which then results in a vanishing amplitude.

### S- and P-wave charmonium exclusive decays



"-": forbidden by angular-momentum and parity conserv.

"  $\epsilon$  ": to leading twist order forbidden in pQCD

"√": to leading twist order allowed in pQCD

"()": either G-parity or isospin are violated

Feldmann and Kroll, PRD62, 074006 (2000)

 $\psi$ (3770) non-D D decays into VP

$$BR(\chi_{c1} \to K^{*0}\bar{K}^{*0}) = (1.6 \pm 0.4) \times 10^{-3}$$
 PDG2008

The helicity selection rule seems to be violated badly in charmonium decays!

# ψ(3770) non-D D decay

-- IML as a mechanism for evading the helicity selection rule

$$\psi$$
(3770)

$$I^G(J^{PC}) = 0^-(1^{-})$$

### $\psi$ (3770) MASS

```
OUR FIT includes measurements of m_{\psi(2S)}, m_{\psi(3770)}, and m_{\psi(3770)} - m_{\psi(2S)}.
                                  DOCUMENT ID TECN COMMENT
VALUE (MeV)
                      EVTS
3772.92 \pm 0.35 OUR FIT Error includes scale factor of 1.1.
3775.2 ±1.7 OUR AVERAGE Error includes scale factor of 1.4. See the ideogram
below
                                 <sup>1</sup>ABLIKIM 08D BES2 e^+e^- \rightarrow hadrons
3772.0 + 1.9
                                  AUBERT 08B BABR B \rightarrow D\overline{D}K
3775.5 \pm 2.4 \pm 0.5 57
                                                  08 BELL B^+ \rightarrow D^0 \overline{D}{}^0 K^+
                                  BRODZICKA
3776 + 5 + 4
                        68
                                             07BE BABR e^+e^- \rightarrow D\overline{D}\gamma
                                  AUBERT
3778.8 + 1.9 + 0.9
```

**Particle Data Group 2008** 

#### $\psi$ (3770) WIDTH

| VALUE (MeV)              | EVTS | DOCUMENT ID          | TECN      | COMMENT                                    |
|--------------------------|------|----------------------|-----------|--------------------------------------------|
| 27.3± 1.0 OUR FIT        |      |                      |           |                                            |
| 27.6± 1.0 OUR AVERA      | GE   |                      |           |                                            |
| 30.4± 8.5                |      | <sup>4</sup> ABLIKIM | 08D BES2  | $e^+e^- 	o hadrons$                        |
| $27 \pm 10 \pm 5$        | 68   | BRODZICKA            | 08 BELL   | $B^+ \rightarrow D^0 \overline{D}{}^0 K^+$ |
| $28.5 \pm 1.2 \pm 0.2$   |      | ABLIKIM              | 07E BES2  | $e^+e^-  ightarrow$ hadrons                |
| $23.5 \pm \ 3.7 \pm 0.9$ |      | AUBERT               | 07BE BABR | $e^+e^- 	o D\overline{D}\gamma$            |
| $26.9 \pm \ 2.4 \pm 0.3$ |      | ABLIKIM              | 06L BES2  | $e^+e^-  ightarrow { m hadrons}$           |
| 24 ± 5                   |      | SCHINDLER            | 80 MRK2   | $e^+e^-$                                   |
| 24 ± 5                   |      | BACINO               | 78 DLCO   | e <sup>+</sup> e <sup>-</sup>              |
| 28 ± 5                   |      | RAPIDIS              | 77 LGW    | $e^+e^-$                                   |

**Particle Data Group 2008** 

<sup>&</sup>lt;sup>4</sup> Reanalysis of data presented in BAI 02C. From a global fit over the center-of-mass energy region 3.7–5.0 GeV covering the  $\psi(3770)$ ,  $\psi(4040)$ ,  $\psi(4160)$ , and  $\psi(4415)$  resonances. Phase angle fixed in the fit to  $\delta=0^{\circ}$ .

#### $\psi$ (3770) DECAY MODES

In addition to the dominant decay mode to  $D\overline{D}$ ,  $\psi(3770)$  was found to decay into the final states containing the  $J/\psi$  (BAI 05, ADAM 06). ADAMS 06 and HUANG 06A searched for various decay modes with light hadrons and found a statistically significant signal for the decay to  $\phi\eta$  only (ADAMS 06).

|                       | Mode                   | Fraction $(\Gamma_i/\Gamma)$  | Scale factor/<br>Confidence level |
|-----------------------|------------------------|-------------------------------|-----------------------------------|
| $\overline{\Gamma_1}$ | $D\overline{D}$        | (85.3 ±3.2 ) %                |                                   |
| $\Gamma_2$            | $D^0 \overline{D}{}^0$ | $(48.7 \pm 3.2)\%$            |                                   |
| $\Gamma_3$            | $D^+D^-$               | $(36.1 \pm 2.8)\%$            |                                   |
| $\Gamma_4$            | $J/\psi \pi^+ \pi^-$   | $(1.93\pm0.28)\times10$       | -3                                |
| $\Gamma_5$            | $J/\psi \pi^0 \pi^0$   | ( $8.0 \pm 3.0$ ) $\times$ 10 | -4                                |
| $\Gamma_6$            | $J/\psi \eta$          | (9 ±4 )×10                    | -4                                |
| $\Gamma_7$            | $J/\psi \pi^0$         | < 2.8 × 10                    | <sup>-4</sup> CL=90%              |
| Γ <sub>8</sub>        | $\gamma \chi_{c0}$     | $(7.3 \pm 0.9) \times 10$     | -3                                |
| $\Gamma_9$            | $\gamma \chi_{c1}$     | ( $2.9 \pm 0.6$ ) $\times$ 10 | _3                                |
| $\Gamma_{10}$         | $\gamma \chi_{c2}$     | < 9 × 10                      | −4 CL=90%                         |
| $\Gamma_{11}$         | $e^+e^-$               | ( $9.7 \pm 0.7$ ) $\times$ 10 | −6 S=1.2                          |
|                       |                        |                               |                                   |
| Γ <sub>26</sub>       | $\phi\eta$             | ( 3.1 $\pm$ 0.7 ) $\times$ 10 | -4                                |

**Particle Data Group 2008** 

### $\square \psi(3770)$ non-D $\overline{D}$ decay

### Experimental discrepancies:

#### Exclusive D D cross sections are measured at BES and CLEO-c:

M. Ablikim *et al.*, Phys. Rev. Lett. **97**, 121801 (2006); M. Ablikim *et al.*, Phys. Lett. B **641**, 145 (2006); M. Ablikim *et al.*, Phys. Rev. D **76**, 122002 (2007); M. Ablikim *et al.*, Phys. Lett. B **659**, 74 (2008).

$$\sigma_{D\bar{D}}^{\text{obs}} = (6.07 \pm 0.40 \pm 0.35) \text{ nb}$$

S. Dobbs et al., Phys. Rev. D 76, 112001 (2007).

| Quantity                                                    | Value                         |
|-------------------------------------------------------------|-------------------------------|
| $\sigma(e^+e^- \to D^0\bar{D}^0)$                           | $(3.66 \pm 0.03 \pm 0.06)$ nb |
| $\sigma(e^+e^- \to D^+D^-)$                                 | $(2.91 \pm 0.03 \pm 0.05)$ nb |
| $\sigma(e^+e^- \to D\bar{D})$                               | $(6.57 \pm 0.04 \pm 0.10)$ nb |
| $\sigma(e^+e^- \to D^+D^-)/\sigma(e^+e^- \to D^0\bar{D}^0)$ | $0.79 \pm 0.01 \pm 0.01$      |

### Inclusive non-D D hadronic cross sections from BES



• BES-II: non-D D branching ratio can be up to 15%

$$\sigma_{\text{non-}D\bar{D}}^{\text{obs}} = (1.08 \pm 0.40 \pm 0.15) \text{ nb}$$

• CLEO-c: 
$$BR_{\psi(3770)\to D\bar{D}} = (103.0 \pm 1.4^{+5.1}_{-6.8})\%$$

The lower bound suggests the maximum of non-D  $\bar{D}$  b.r. is about 6.8%.

### Updated results from CLEO-c: 1004.1358[hep-ex]

$$\mathcal{B}(\psi(3770) \to \text{non-}D\bar{D}) = (-3.3 \pm 1.4^{+6.6}_{-4.8}) \%$$

< 9% at 90% confidence level

### **■** Theoretical discrepancies:

### In theory

- Y. P. Kuang and T. M. Yan, Phys. Rev. D **41**, 155 (1990).
- Y. B. Ding, D. H. Qin, and K. T. Chao, Phys. Rev. D 44, 3562 (1991).
- J. L. Rosner, Phys. Rev. D 64, 094002 (2001).
- J. L. Rosner, Ann. Phys. (N.Y.) 319, 1 (2005).
- E. Eichten, S. Godfrey, H. Mahlke, and J. L. Rosner, Rev. Mod. Phys. **80**, 1161 (2008).
- M. B. Voloshin, Phys. Rev. D 71, 114003 (2005).
- N. N. Achasov and A. A. Kozhevnikov, Phys. At. Nucl. 69, 988 (2006).
- Z. G. He, Y. Fan, and K. T. Chao, Phys. Rev. Lett. **101**, 112001 (2008).



Z. G. He, Y. Fan, and K. T. Chao, Phys. Rev. Lett. **101**, 112001 (2008).

# □ Recognition of possible long-range transition mechanisms

### pQCD (non-relativistic QCD):

- ◆If the heavy c c are good constituent degrees of freedom, c and c annihilate at the origin of the (c c) wavefunction. Thus, NRQCD should be valid.
- ♠pQCD is dominant in ψ(3770) → light hadrons via 3g exchange, hence the OZI rule will be respected.
- $\Rightarrow$   $\psi$ (3770) non-D  $\overline{D}$  decay will be suppressed.

#### Non-pQCD:

- igspace Are the constituent c c good degrees of freedom for  $\psi(3770) \rightarrow$  light hadrons? Or is pQCD dominant at all?
- ◆If not, how the OZI rule is violated?
- $\Rightarrow$  Could the OZI-rule violation led to sizeable  $\psi$ (3770) non-D D decay?
- ⇒ How to quantify it?

□ Recognition of long-range transition mechanisms in ψ(3770) non-D D decays

**Short-range pQCD transition** via single OZI (SOZI) process

**Long-range OZI evading transition** 





# $\psi$ (3770) decays to vector and pseudoscalar via D D and D $\bar{D}^*$ + c.c. rescatterings



FIG. 2. The t- [(a) and (b)] and s-channel (c) meson loops in  $\psi(3770) \rightarrow VP$ .

# The V → VP transition has only one single coupling of anti-symmetric tensor form

### Transition amplitude can thus be decomposed as:



### **■ Effective Lagrangians for meson couplings**

$$\begin{split} \mathcal{L}_{\psi D\bar{D}} &= g_{\psi D\bar{D}} \{ D \partial_{\mu} \bar{D} - \partial_{\mu} D \bar{D} \} \psi^{\mu}, \\ \mathcal{L}_{\gamma D\bar{D}^{*}} &= -i g_{\gamma D\bar{D}^{*}} \epsilon_{\alpha\beta\mu\nu} \partial^{\alpha} \gamma^{\beta} \partial^{\mu} \bar{D}^{*\nu} D + \text{H.c.}, \\ \mathcal{L}_{\mathcal{P}D^{*}\bar{D}^{*}} &= -i g_{\mathcal{P}D^{*}\bar{D}^{*}} \epsilon_{\alpha\beta\mu\nu} \partial^{\alpha} D^{*\beta} \partial^{\mu} \bar{D}^{*\nu} \mathcal{P} + \text{H.c.}, \\ \mathcal{L}_{\mathcal{P}\bar{D}D^{*}} &= g_{D^{*}\mathcal{P}\bar{D}} \{ \bar{D} \partial_{\mu} \mathcal{P} - \partial_{\mu} \bar{D} \mathcal{P} \} D^{*\mu} + \text{H.c.}, \end{split}$$

#### **Coupling constants:**

$$g_{\psi(3770)D^+D^-} = 12.71$$
  $g_{\psi(3770)D^0\bar{D}^0} = 12.43$ 

$$\begin{split} g_{D^*D\pi} &= \frac{2}{f_\pi} g \sqrt{m_D m_{D^*}}, \qquad g_{D^*D^*\pi} = \frac{g_{D^*D\pi}}{\tilde{M}_D}, \\ g_{D^*D\rho} &= \sqrt{2} \lambda g_\rho, \qquad g_{DD\rho} = g_{D^*D\rho} \tilde{M}_D, \end{split}$$

where  $f_{\pi} = 132$  MeV is the pion decay constant, and  $\tilde{M}_D \equiv \sqrt{m_D m_{D^*}}$  sets a mass scale. The parameters  $g_{\rho}$  respect the relation  $g_{\rho} = m_{\rho}/f_{\pi}$  [20]. We take  $\lambda = 0.56$  GeV<sup>-1</sup> and g = 0.59 [21,22].

Cacalbuoni et al, Phys. Rept. (1997).

### i) Determine long-range parameter in $\psi(3770) \rightarrow J/\psi \eta$ .



where  $\Lambda \equiv m_{\rm ex} + \alpha \Lambda_{\rm QCD}$ , with  $\Lambda_{\rm QCD} = 0.22$  GeV.

 $\alpha = 1.73$ 

- ♦ Soft η production
- ♦ η-η' mixing is considered
- ♦ a form factor is needed to kill the loop integral divergence

The cut-off energy for the divergent meson loop integral can be determined by data, and then extended to other processes. ii) Determine short-range parameter combing  $\psi(3770) \rightarrow \phi \eta$  and  $\psi(3770) \rightarrow \rho \pi$ .

#### Relative strengths among pQCD transition amplitudes:

$$g_S^{\rho^0 \pi^0} : g_S^{K^{*+}K^-} : g_S^{\omega \eta} : g_S^{\omega \eta'} : g_S^{\phi \eta} : g_S^{\phi \eta'}$$

$$= 1:1: \cos \alpha_P : \sin \alpha_P : (-\sin \alpha_P) : \cos \alpha_P$$

$$\eta = \cos \alpha_P |n\bar{n}\rangle - \sin \alpha_P |s\bar{s}\rangle,$$

$$\eta' = \sin \alpha_P |n\bar{n}\rangle + \cos \alpha_P |s\bar{s}\rangle,$$

With  $\alpha=1.73$  fixed, we can then determine the other two parameters  $g_S\equiv g_S^{\rho^0\pi^0}=0.085$  and  $\delta=-66^\circ$  by experimental data, i.e.,  $\mathrm{BR}_{\phi\eta}=(3.1\pm0.7)\times10^{-4}$  [8] and  $\mathrm{BR}_{\rho\pi}<0.24\%$  with C.L. of 90% [28].

### iii) Predictions for $\psi(3770) \rightarrow VP$ .

| BR (×10 <sup>-4</sup> )          | t channel             | s channel             | SOZI  | Total                |
|----------------------------------|-----------------------|-----------------------|-------|----------------------|
| $J/\psi \eta$                    | 8.44                  | 0.13                  |       | 9.0                  |
| $J/\psi\pi^0$                    | 0.1                   | $2.58 \times 10^{-2}$ | • • • | $4.4 \times 10^{-2}$ |
| $ ho\pi$                         | 34.45                 | $7.69 \times 10^{-5}$ | 8.53  | 24.0                 |
| $K^{*+}K^{-} + c.c$              | 10.97                 | $6.83 \times 10^{-6}$ | 5.72  | 8.91                 |
| $K^{*0}\bar{K}^{0} + \text{c.c}$ | 11.80                 | $4.38 \times 10^{-5}$ | 5.72  | 9.90                 |
| $\phi\eta$                       | 1.25                  | $1.13 \times 10^{-5}$ | 1.16  | 3.1                  |
| $\phi  \eta'$                    | 0.87                  | $2.53 \times 10^{-5}$ | 1.86  | 3.78                 |
| $\omega\eta$                     | 6.83                  | $9.64 \times 10^{-6}$ | 1.88  | 4.69                 |
| $\omega\eta'$                    | 0.58                  | $2.87 \times 10^{-5}$ | 0.97  | 0.39                 |
| $ ho\eta$                        | $1.88 \times 10^{-2}$ | $1.77 \times 10^{-5}$ | • • • | $1.8 \times 10^{-2}$ |
| $ ho \eta'$                      | $1.08 \times 10^{-2}$ | $1.54 \times 10^{-5}$ | • • • | $1.0 \times 10^{-2}$ |
| $\omega\pi^0$                    | $2.57 \times 10^{-2}$ | $1.82 \times 10^{-5}$ |       | $2.5 \times 10^{-2}$ |
| Sum                              | 75.34                 | 0.16                  | 25.84 | 63.87                |

By varying  $\delta$ , but keeping the  $\phi\eta$  rate unchanged (i.e.  $g_S$  will be changed), we obtain a lower bound for the sum of branching ratios  $\sim 0.41\%$ .

### X. Liu, B. Zhang and X.Q. Li, PLB675, 441(2009)



Z. G. He, Y. Fan, and K. T. Chao, Phys. Rev. Lett. **101**, 112001 (2008).

### ■ Further evidence for the role played by IHL

• " $\rho\pi$  puzzle" in J/ $\psi$ ,  $\psi$ (3686)  $\rightarrow$  VP.

[Zhao, Li and Chang, PLB645, 173(2007); Li, Zhao, and Chang, JPG (2008); Zhao, Li and Chang, arXiv:0812.4092[hep-ph], and work in progress]

• Isospin-violating decays as a probe for IML, e.g.  $\psi' \to J/\psi \ \pi^0$ ,  $h_c \pi^0$ , etc.

[Guo, Hanhart, and Meissner, PRL103, 082003(2009); Guo et al, 1002.2712[hep-ph], and also talk by Hanhart at this conference]

♦ An analogue to the ψ(3770) non-D  $\overline{D}$  decay: the φ(1020) non-K  $\overline{K}$  decay

[Li, Zhao and Zou, PRD77, 014010(2008); Li, Zhang and Zhao, JPG36, 085008(2009)].

lacktriangle Helicity selection rule evading in  $\chi_{c1} \rightarrow VV$ ,  $\chi_{c2} \rightarrow VP$ , and  $\eta_c$ ,  $\chi_{c0}$ ,  $h_c \rightarrow B \ \bar{B}$ ,

[Liu and Zhao, PRD81, 014017(2010); arXiv: 1004.0496]

◆ More to be studied in order to gain systematic insights into the underlying mechanisms ...



# Backup slides

 $\chi_{c1} \rightarrow VV \text{ and } \chi_{c2} \rightarrow VP$ 

-- further evidence for the IML

# Long-distance contribution

Intermediate charmed meson loop transitions in  $\chi_{c1} \rightarrow VV$ 



# Wavefunctions and effective Lagrangian based on heavy quark symmetry and SU(3) flavor symmetry

The spin multiplet for these four P-wave charmonium states are expressed as

$$P_{c\bar{c}}^{\mu} = \left(\frac{1+\rlap/v}{2}\right) \left(\chi_{c2}^{\mu\alpha}\gamma_{\alpha} + \frac{1}{\sqrt{2}}\epsilon_{\mu\nu\alpha\beta}v^{\alpha}\gamma^{\beta}\chi_{c1}^{\nu} + \frac{1}{\sqrt{3}}(\gamma^{\mu} - v^{\mu})\chi_{c0} + h_{c}^{\mu}\gamma_{5}\right) \left(\frac{1-\rlap/v}{2}\right).$$

The charmed and anti-charmed meson triplet read

$$H_{1i} = \left(\frac{1+\rlap/v}{2}\right) \left[\mathcal{D}_i^{*\mu}\gamma_\mu - \mathcal{D}_i\gamma_5\right],$$
  
$$H_{2i} = \left[\bar{\mathcal{D}}_i^{*\mu}\gamma_\mu - \bar{\mathcal{D}}_i\gamma_5\right] \left(\frac{1-\rlap/v}{2}\right),$$

where 
$$\mathcal{D}^{(*)} = (D^{0(*)}, D^{+(*)}, D_s^{+(*)}).$$

Effective Lagrangian for the P-wave charmonium couplings to charmed mesons:

$$\mathcal{L}_1 = ig_1 Tr[P^{\mu}_{c\bar{c}} \bar{H}_{2i} \gamma_{\mu} \bar{H}_{1i}] + H.c.$$

The effective Lagrangians describe the couplings of charmed mesons to light hadrons read

$$\begin{split} \mathcal{L}_{\mathcal{D}\mathcal{D}\mathcal{V}} &= -ig_{DDV}\bar{\mathcal{D}}_{i}\overset{\leftrightarrow}{\partial}_{\mu}\mathcal{D}_{j}(\mathcal{V}^{\mu})_{ij}, \\ \mathcal{L}_{\mathcal{D}^{*}\mathcal{D}\mathcal{V}} &= -2f_{D^{*}DV}\epsilon_{\mu\nu\alpha\beta}(\partial^{\mu}\mathcal{V}^{\nu})_{ij}(\bar{\mathcal{D}}_{i}\overset{\leftrightarrow}{\partial}^{\alpha}\mathcal{D}_{j}^{*\beta} - \bar{\mathcal{D}}_{i}^{*\beta}\overset{\leftrightarrow}{\partial}^{\alpha}\mathcal{D}_{j}), \\ \mathcal{L}_{\mathcal{D}^{*}\mathcal{D}^{*}\mathcal{V}} &= ig_{D^{*}D^{*}V}\bar{\mathcal{D}}_{i}^{*\nu}\overset{\leftrightarrow}{\partial}_{\mu}\mathcal{D}_{j\nu}^{*}(\mathcal{V}^{\mu})_{ij} + 4if_{D^{*}D^{*}V}\bar{\mathcal{D}}_{i}^{*\mu}(\partial_{\mu}\mathcal{V}_{\nu} - \partial_{\nu}\mathcal{V}_{\mu})_{ij}\mathcal{D}_{j}^{*\nu}, \\ \mathcal{L}_{\mathcal{D}^{*}\mathcal{D}\mathcal{P}} &= -ig_{D^{*}DP}(\bar{\mathcal{D}}_{i}\partial_{\mu}\mathcal{P}_{ij}\mathcal{D}_{j}^{*\mu} - \bar{\mathcal{D}}_{i}^{*\mu}\partial_{\mu}\mathcal{P}_{ij}\mathcal{D}_{j}), \\ \mathcal{L}_{\mathcal{D}^{*}\mathcal{D}^{*}\mathcal{P}} &= \frac{1}{2}g_{D^{*}D^{*}P}\epsilon_{\mu\nu\alpha\beta}\bar{\mathcal{D}}_{i}^{*\mu}\partial^{\nu}\mathcal{P}_{ij}\overset{\leftrightarrow}{\partial}^{\alpha}\mathcal{D}_{j}^{*\beta}, \end{split}$$

$$\mathcal{V} = \begin{pmatrix} \frac{1}{\sqrt{2}}(\rho^0 + \omega) & \rho^+ & K^{*+} \\ \rho^- & \frac{1}{\sqrt{2}}(-\rho^0 + \omega) & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}$$

$$\mathcal{P} = \left( \begin{array}{ccc} \frac{1}{\sqrt{2}}(\pi^0 + \eta) & \pi^+ & K^+ \\ \pi^- & \frac{1}{\sqrt{2}}(-\pi^0 + \eta) & K^0 \\ K^- & K^0 & -\sqrt{\frac{2}{3}}\eta \end{array} \right)$$

### Transition amplitudes for $\chi_{c1} \rightarrow VV$

With an effective Lagrangian method considering heavy quark symmetry and SU(3) symmetry, the IML amplitudes are expressed as

$$\mathcal{M}_{1a} = 2ig_{DD^*\chi_{c1}}g_{DDV}f_{D^*DV}\epsilon_{\lambda}^{\chi_{c1}}\epsilon_{1}^{*\sigma}\epsilon_{2}^{*\tau} \int \frac{d^{4}q}{(2\pi)^{4}}$$

$$\times (q_{1\sigma} + q_{\sigma})\epsilon_{\mu\tau\alpha\beta}p_{2}^{\mu}(q^{\alpha} - q_{2}^{\alpha})\frac{g^{\lambda\beta} - q_{2}^{\lambda}q_{2}^{\beta}/m_{D^{*}}^{2}}{D_{a}D_{1}D_{2}}\mathcal{F}(q^{2})$$

$$\mathcal{M}_{1b} = 2ig_{DD^{*}\chi_{c1}}g_{DDV}f_{D^{*}DV}\epsilon_{\lambda}^{\chi_{c1}}\epsilon_{1}^{*\sigma}\epsilon_{2}^{*\tau} \int \frac{d^{4}q}{(2\pi)^{4}}$$

$$\times \epsilon_{\mu\sigma\alpha\beta}p_{1}^{\mu}(q_{1}^{\alpha} + q^{\alpha})\left[g_{D^{*}D^{*}V}(q_{2\tau} - q_{\tau})g_{\gamma\delta} + 4f_{D^{*}D^{*}V}(p_{2\delta}g_{\tau\gamma} - p_{2\gamma}g_{\delta\tau})\right]$$

$$\times (g^{\beta\gamma} - q^{\beta}q^{\gamma}/m_{D^{*}}^{2})(g^{\lambda\delta} - q_{2}^{\lambda}q_{2}^{\delta}/m_{D^{*}}^{2}) \times \frac{1}{D_{b}D_{1}D_{2}}\mathcal{F}(q^{2})$$

The phenomenologically introduced form factor:

$$\mathcal{F}(q^2) = \prod_i \left( \frac{m_i^2 - \Lambda_i^2}{q_i^2 - \Lambda_i^2} \right)$$

where 
$$\Lambda_i = m_i + \alpha \Lambda_{QCD}$$



# Couplings for $\chi_{c1}$ and $\chi_{c2}$ to charmed mesons



$$\begin{array}{rcl} g_{DD^*\chi_{c1}} &=& 2\sqrt{2}g_1\sqrt{m_Dm_{D^*}m_{\chi_{c1}}},\\ g_{D^*D^*\chi_{c2}} &=& 4g_1m_{D^*}\sqrt{m_{\chi_{c2}}},\\ g_1 &=& -\sqrt{\frac{m_{\chi_{c0}}}{3}}\frac{1}{f_{\chi_{c0}}}, \end{array}$$

with  $f_{\chi_{c0}} \simeq 0.51 \; \mathrm{GeV}$ 

Casalbuoni et al, Phys. Rept. 281, 145(1997); Cheng, Chua, and Soni, PRD71, 014030 (2005)

### Numerical Result for $\chi_{c1} \rightarrow VV$

| BR (×10 <sup>-4</sup> ) | $K^{*0}\bar{K}^{*0}$ | ρρ         | $\omega\omega$ | $\phi\phi$   |          |   |
|-------------------------|----------------------|------------|----------------|--------------|----------|---|
| Exp. data               | $16 \pm 4$           |            |                |              |          |   |
| Meson loop              | $12\sim20$           | $26\sim54$ | $8.7\sim18$    | $2.7\sim4.6$ | <b>+</b> | α |
| SU(3)(R = 1)            | 16.0                 | 26.8       | 8.8            | 6.8          |          |   |
| SU(3)(R = 0.838)        | 16.0                 | 32.0       | 10.6           | 4.0          |          |   |



The results of a simple parameterization method based on SU(3) flavour symmetry are also presented in the table, where

$$R \equiv \langle (q\overline{s})_{V_1}(s\overline{q})_{V_2}|\hat{H}|\chi_{c1}\rangle/\langle (q\overline{q})_{V_1}(q\overline{q})_{V_2}|\hat{H}|\chi_{c1}\rangle$$

and 
$$R \simeq f_{\pi}/f_{K}$$

# Model-dependence on $\alpha$



# $\chi_{c2} \rightarrow VP$

















- **♦** Further suppressed by approximate G-parity or isospin/U-spin conservation.
- **♦** Decay to neutral VP is forbidden by C-parity conservation.

### Transition amplitudes for $\chi_{c2} \rightarrow VP$

$$\mathcal{M}_{2a} = 2ig_{D^*D^*\chi_{c2}} f_{D^*DV} g_{D^*DP} \epsilon_{\xi\eta}^{\chi_{c2}} \epsilon_{\rho^+}^{\nu} \int \frac{d^4q}{(2\pi)^4} \epsilon_{\mu\nu\alpha\beta} p_1^{\mu} (q_1^{\alpha} + q^{\alpha}) p_2^{\lambda}$$

$$\times (g^{\xi\beta} - q_1^{\xi} q_1^{\beta}/m_{D^*}^2) (g^{\eta\lambda} - q_2^{\eta} q_2^{\lambda}/m_{D^*}^2) \frac{1}{D_a D_1 D_2} \mathcal{F}(q^2),$$

$$\mathcal{M}_{2b} = -\frac{1}{2} i g_{D^*D^*\chi_{c2}} g_{D^*D^*P} \epsilon_{\xi\eta}^{\chi_{c2}} \epsilon_{\rho^+}^{\tau} \int \frac{d^4q}{(2\pi)^4} \epsilon_{\rho\sigma\alpha\beta} p_2^{\sigma} (q^{\alpha} - q_2^{\alpha})$$

$$\times \left[ -g_{D^*D^*V} (q_{1\tau} + q_{\tau}) g^{\gamma\delta} - 4 f_{D^*D^*V} (p_1^{\gamma} g_{\tau}^{\delta} - p_1^{\delta} g_{\tau}^{\gamma}) \right]$$

$$\times (g^{\xi\gamma} - q_1^{\xi} q_1^{\gamma}/m_{D^*}^2) (g^{\eta\beta} - q_2^{\eta} q_2^{\beta}/m_{D^*}^2) (g^{\delta\rho} - q^{\delta} q^{\rho}/m_{D^*}^2) \frac{1}{D_b D_1 D_2} \mathcal{F}(q^2)$$

# $\chi_{c2} \rightarrow VP$

| $BR(\times 10^{-5})$ | $K^{*0}\bar{K}^{0} + c.c.$ | $K^{*+}K^{-} + c.c.$ | $\rho^{+}\pi^{-} + c.c.$        |
|----------------------|----------------------------|----------------------|---------------------------------|
| Meson loop           | $4.0\sim6.7$               | $4.0 \sim 6.7$       | $(1.2 \sim 2.0) \times 10^{-2}$ |
| Exp. data            |                            | _                    |                                 |

 $\alpha$ =**0.3** ~ **0.33** 



### **Summary**

- ♦ The long-distance rescattering effects can give sizeable contributions to the processes  $\chi_{c1}$  >VV and  $\chi_{c2}$  >VP, which are supposed to be suppressed according to the helicity selection rule.
- ♦ With the parameter α constrained by the measured BR( $\chi_{c1}$  →  $\overline{K}^{*0}K^{*0}$ ), BR( $\chi_{c1}$  → VV) are predicted to be at least at the order of 10<sup>-4</sup>, and BR( $\chi_{c2}$  →  $\overline{K}^{*0}K$ +c.c.) is at the order of 10<sup>-5</sup> that may be detectable.
- ◆ The P-wave charmonium decay should be ideal for examining the evading mechanisms of the helicity selection rule. The huge data sample accumulated by BESIII provide a good opportunity to check this.
- ♦ Similar mechanisms via intermediate hadron loops are also studied in  $\eta_c$ ,  $\chi_{c0}$ ,  $h_c$  → B  $\overline{B}$ .