

Progress and Plans for Cavity Tests at MuCool Test Area

Yağmur Torun
MICE Collaboration Meeting
June 18, 2013 -- IIT

MTA 201-MHz Program Overview (Surface treatment, NF channel, MICE)

- 201-MHz MICE prototype cavity with SRFlike surface treatment (EP, HP rinse)
 - Conditioned to design gradient quickly
 - Demonstrated operation with large curved Be windows
 - Somewhat reduced performance in fringe field of solenoid
 - No surface damage seen on cavity interior
 - Some evidence for sparking in the coupler
 - Multi-pacting studied (T. Luo)
 - · Design now modified
 - Also looking into TiN coating
 - Radiation output measured (MICE detector backgrounds)
- Future
 - Install/operate single-cavity vessel
 - Large diameter magnet (coupling coil) needed for field configuration closer to MICE/cooling channel

201-MHz Single-Cavity Module

MICE cavity in vacuum vessel for MTA test Components

- 1st MICE cavity EP'ed at LBNL
- Vacuum vessel built at Keller
- Be windows in hand
- Actuators built at LBNL
- Tuner forks built at FNAL
- Ready for fabrication of new couplers at LBNL

201-MHz Single-Cavity Module

Assembly/integration

- Cavity and vessel at Lab-6
- Clean room prepared
- Plan in place for handling and transport (R. Schultz, J. Volk)
- Assembly fixtures designed (A. DeMello)
- Tuner control bench tested (L. Somaschini talk)
- Expect operation Fall 2013
 - beam test also under consideration
- Ultimately will be tested with the first Coupling Coil Magnet
 - Requires 6-month MTA shutdown

Current configuration

- Original prototype cavity still in the hall
 - was lifted onto platform during long shutdown with shield wall out
 - using temporary forklift
- No vacuum vessel, air outside
 - end-plates for support
- Couplers already removed
 - one cut up for inspection
- To be lifted off platform
 - with new gantry crane
 - span limited by entry maze
 - and rolled out through labyrinth on casters
- Rails will be reused for new module
- Be windows will be transferred to new cavity

Next -- Single-Cavity Vessel

Final layout -- RFCC_{lite}

Components in Lab-6

Vacuum vessel on transport stand

Tuner installation fixture (horizontal stand)

Tuner forks

Cavity

Tuner bench tests

- First set up on P. Hanlet's desk (EPICS)
- Transferred to L. Somaschini's desk (LabVIEW)
- Forks to be trimmed/tested in Lab-6
- All actuators in hand
- 2 new proportional valves purchased

Module Transport

- Will bring into MTA hall through labyrinth
- Vessel with heavily ribbed doors too wide for labyrinth
 - Will remove and roll in doors separately
 - Put on thin cover plates to keep module interior clean
- Module on stand too tall for clean room and labyrinth
 - New "transport" stand is 10" shorter
- Tight fit checked with laser scan data

Laser scan data

Through the Maze

On Operational Stand

On Transport Stand, thin doors

Cover Plate Transport

Lab 6 Clean Room

 Once doors removed & transport stand installed

- Cavity installation
 - All mechanical assembly and RF testing in clean room (class 100)
 - Horizintal stand tuner insertio

Assembly

- Horizontal stand for tuner installation
- Vertical stand for cavity insertion
- Similar to MICE RFCC
- But simpler (one-sided)
- Welded designs changed to Al extrusion

Insertion Fixture in Clean Room

Assembly in MTA Hall

Remove transport stand, install operational stand

- In MTA Clean Room
 - Install doors
 - RF Couplers
 - Other vacuum hardware

Put on doors in MTA clean room

Vacuum system

- Vessel arrived under purge
- Pumpdown test
 - Baseline 0.16 uTorr
- No other test planned until installation in hall
- Water feed-thru only concern
- Will reuse existing vacuum system
 - Getter + ion pumps
- Separate gauges for cavity, vessel and coupler vacuum pressure

Couplers

22

- Mechanical interface different from earlier prototype in air
 - Separate conditioning stand not feasible
- Vacuum test stand designed (A. DeMello) for initial certification at LBNL
- Drawings finalized modulo minor tweaks (A. DeMello)
- Materials/parts being purchased by Fermilab this week
- Fabrication at LBNL: 10-12 weeks
- Test-fit and coupling adjustment in Lab-6
- To be removed before transport and reinstalled in MTA clean room

Diagnostics

- Vessel
 - Top plate (A. Moretti) for
 - RF pickups
 - cavity vacuum pickup
 - optical fibers
 - acoustic sensors under test on 805-MHz cavities (P. Lane, P. Snopok)
 - vacuum
 - thermocouples
- Couplers
 - directional couplers for forward/reverse power
 - vacuum
- External
 - Air pressure (tuner control)
 - Water temperature/pressure (cooling)

RF Controls (D. Peterson, R. Pasquinelli)

Linac Station 7

Amplitude Control Block Diagram

Linac Station 7

RF Drive Block Diagram

Linac RF station 7 modifications for MTA 201 MHz cavity testing

- Short Term (testing in progress)
 - Amplitude Control via modulator ramping
 - Frequency Control via HP8656B.
- Mid Term
 - Tuner Control via RS-485 and pneumatics.
- Long Term
 - New LLRF with phase control and beam sync.

- Frequency control through signal generator
- Driver amplifier driven into saturation
- Overall amplitude control through program curve to the Modulator

Outlook

- Expect to start assembly in June
- On track for results from operation of single-cavity module at MTA by cm37
 - tight schedule and lots of work to do
 - resource availability critical
- Installation will provide valuable experience for MICE RFCC module assembly
- And possibly some LLRF

Credits

 Most mechanical engineering material from Ryan Schultz (FNAL) & Allan DeMello (LBNL)