SPS Wideband Transverse Kicker Evaluation and Design Progress and Plans

J. M. Cesaratto¹

Kicker Design Contributors:

J. M. Cesaratto¹, J. D. Fox¹ S. DeSantis², Z. Paret², H. Qian², A. Ratti² W. Hofle³ D. Alesini⁴, A. Drago⁴, S. Gallo⁴, F. Marcellini⁴, M. Zobov⁴

¹Accelerator Research Department, SLAC National Accelerator Laboratory ²Lawrence Berkeley National Laboratory ³BE-RF Group, CERN ⁴INFN-LNF

LARP/HiLumi Collaboration Meeting CM20, April 17, 2013

J. M. Cesaratto

LARP CM20

- Introduction, the need for a wide band kicker, design evaluation criteria
- Kicker designs, possible implementations, simulation results
 - Cavity
 - Stripline
 - Slotted, 3 flavors

э

< E

Purpose: Need for a Wide Band Kicker

- The current SPS tapered stripline rolls off at 200 MHz, kicker of larger bandwidth necessary is for intra-bunch dynamics control.
- For the application of controlling electron cloud (ecloud) and transverse mode coupling instability (TMCI)
- Establish a baseline for implementation of a vertical kicker system in the super proton synchrotron (SPS)
- Review, evaluate, and determine the capabilities of several possible implementations with the criteria:
 - Shunt impedance
 - 2 Beam coupling broadband impedance
 - 3 Bandwidth
 - 4 Heating issues

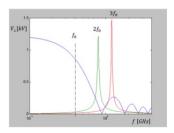
- 5 Fabrication complexity & complications
- 6 Vacuum chamber compatibility

 Ease of coupling to external amplifiers

LARP CM20

April 17, 2013 3 / 22

$Progress \ in \ 2012 - 2013$


- Evaluation of three structures for use as wide band transverse kickers in the SPS, cavities, striplines, slotted structures
- Refinement on specification of the SPS beam stay-clear and aperture requirements
- Revised stripline design compatible with beam stay-clear
- Extensive modeling of the slotted slow wave structure, investigated three variations
- Established collaboration between SLAC LBNL CERN LNF, interest by LNF to build a prototype kicker for installation into SPS

- -

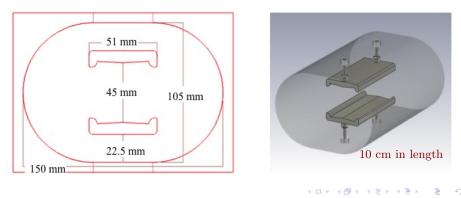
Cavity

Cavity kicker

- Use several narrow band cavities to kick at high frequencies
- Used in conjunction with a stripline for the low frequencies
- Several processing channels necessary
- Phasing between multiple kickers necessary

	Kicker #1	Kicker #2	Kicker #3
Туре	Stripline	Cavity, TM110 defl. mode	Cavity, TM110 defl. mode
3-dB bandwidth	DC - 400 MHz	800 ± 16 MHz	1200 ± 16 MHz
Length	17 cm	15 cm	10 cm
Filling time	0.6 ns	10 ns	10 ns
Q,		25	38
Shunt Impedance	≈ 1.5 kΩ (@ DC)	≈ 1.5 kΩ (@ 800 MHz)	≈ 2.2 kΩ (@ 1200 MHz)

J. M. Cesaratto


LARP CM20

April 17, 2013 5 / 22

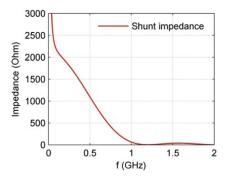
э

Stripline Kicker

- Redesigned to comply with SPS beam stay-clear requirements
- Derived from ALS camshaft kicker (which is 3 times smaller)
- Modeled in CST MS

J. M. Cesaratto

LARP CM20

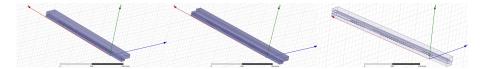

April 17, 2013 6 / 22

Stripline

Stripline Kicker - Transverse Shunt Impedance

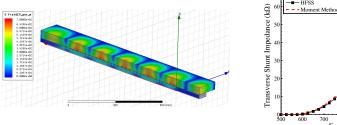
- 2 wire method in MS to determine $R_{\perp}T^2$ (breaks down at DC)
 - 1 k Ω at 500 MHz.
 - 400 Ω at 750 MHz
- Larger dimensions increase stray capacitances and lower HOM cutoff, disrupting shunt impedance at higher frequencies.
- As it is now, kicker could likely be used in the DC - 500 MHz range.
- In order to reach to 1 GHz, needs to be used with high frequency structure

A D N A B N A B

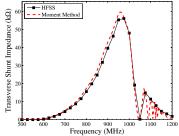

LARP CM20

April 17, 2013

7 / 22

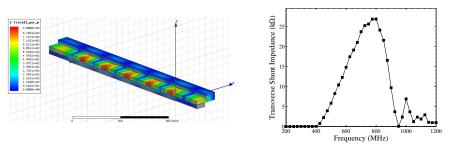

Slotted Kicker

- Similar structures to those used in stochastic cooling at Fermilab and CERN
 - McGinnis type Waveguide
 - Faltin type Coaxial
- Investigated three variations of slotted kickers
 - Waveguide
 - Ridged waveguide
 - Coaxial
- Quarter geometries shown (and on next slides)



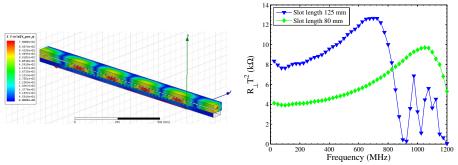
Slotted Kicker - Fermilab's model

E-field at 800 MHz


Agreement between independent methods

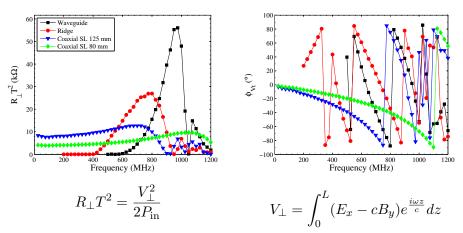
- Waveguide and beam pipe couple together by slots
- Initial simulations carried out by moment method calculation, Slotted Pickups
- Simulations verified with HFSS
 - A more flexible tool, more quantitative output
 - Different geometries simulated easily

Slotted Kicker - Ridged Waveguide


E-field at 500 $\rm MHz$

- With HFSS, explore variations of the slotted structure
- Including a ridge in the waveguide increases the bandwidth, and lowers the operating frequency.
- The shunt impedance is reduced, but still at very acceptable levels

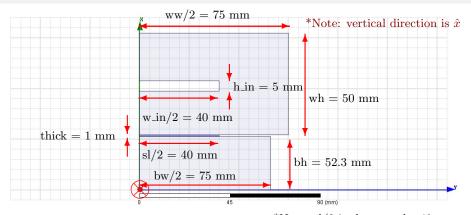
Slotted Kicker - Coaxial, Shunt Impedance


E-field at 500 MHz

- Including a coaxial line in the waveguide increases the bandwidth of the slotted structure
- Shunt impedance is markedly reduced, but still at very acceptable levels
- Voltage phase response linear at low frequency, see next slide
- Very promising candidate

11 / 22

Shunt Impedance Comparison of 3 structures


*Note: vertical in model \hat{x} direction

・ロン ・四と ・日と ・日と

LARP CM20

April 17, 2013 12 / 22

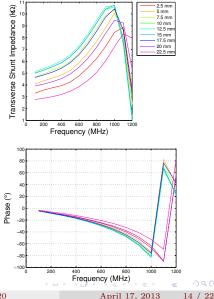
Initial Coaxial Type Parameters

In z-direction (\otimes , beam axis into page):

- slotted length, al = 1000 mm
- slot width, sw = 5 mm
- slot spacing, ss = 20 mm

J. M. Cesaratto

*Note: sl/2 is shown to be 40 mm, but initially was 72.5 mm

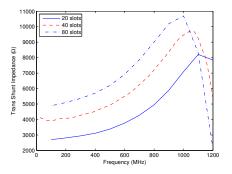

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

April 17, 2013

13 / 22

Optimizing Slot Width - Spacing

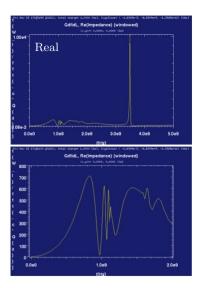
- All parameters of the structure were varied with the goal of maximizing shunt impedance and bandwidth
- As an example, slot width and spacing periodicity
- Slot width and spacing in the z-direction, direction of the beam.
- 40 slots, over 1 m
- Initially started with 5 mm width, 20 mm spacing, aspect ration 1:4
- The aspect ratio which maximized the shunt impedance is $\sim 1:1$
- Phase of transverse voltage nearly linear up to 600 MHz \rightarrow important for feedback function

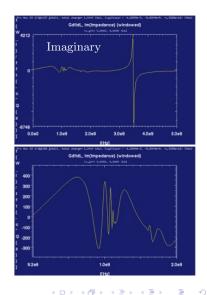


J. M. Cesaratto

LARP CM20

Increasing/Decreasing the Number of Slots

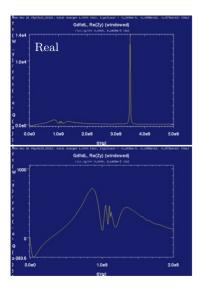

- More kick strength can be achieved by increasing the periodicity of slots - length of slotted section fixed at 1 m
- Beam coupling impedance increases as well
- Coupling impedance calculations on going with GdFidL as design evolves (see slides 16 and 17).
- Discussions with CERN ABP group necessary to specify SPS impedance budget for this structure

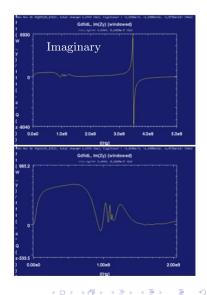


April 17, 2013

15 / 22

Slotted Kicker - Coaxial, Longitudinal Coupling Z

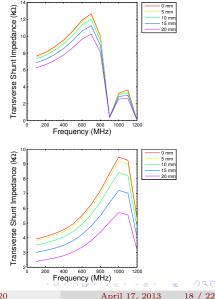



J. M. Cesaratto

LARP CM20

April 17, 2013 16 / 22

Slotted Kicker - Coaxial, Transverse Coupling Z

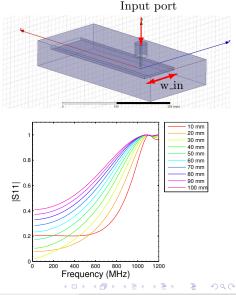

J. M. Cesaratto

LARP CM20

April 17, 2013 17 / 22

Transverse Uniformity

- How does the shunt impedance vary off the axis of the beam?
- Presented for two slot length (horizontal direction) cases:
 - **1**25 mm
 - 2 80 mm
- Transverse displacement modeled up to 20 mm off axis
 - Shunt impedance reduced by 18%
 - 2 Shunt impedance reduced by 39%
- Discussions with CERN ABP group necessary to properly determine the necessary uniformity.



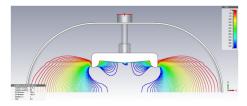
J. M. Cesaratto

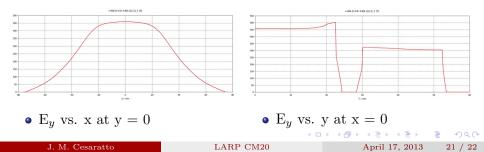
LARP CM20

Optimize Coax to Stripline Interface

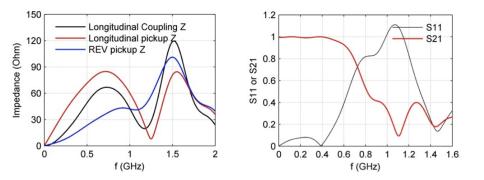
- Matching input port power power to stripline
 - Optimize the stripline, waveguide, and coaxial dimensions to achieve proper matching consistent with parameters necessary to maximize shunt impedance and transfers kick uniformity.
 - Simulations on going, may be difficult to achieve minimal reflection over entire frequency band.
- Example, varying the coaxial width, w_in.

LARP CM20


Summary


- Three structures have been explored as possible kicker options for the SPS wide band feedback effort
- Options:
 - A stripline operating from DC 400 MHz, with two or three cavities
 - A stripline with a slotted kicker
 - Array of striplines
 - A slotted coaxial kicker
- Ideally, would like one structure to cover the entire band. The coaxial type slotted kicker is an attractive option
- Slotted kicker simulations on going to fine tune dimensions for matching the structure
- Design report being written now, compiling all results and analysis from evaluation study, to be submitted to CERN
- LNF interested in building a vacuum compatible prototype of the kicker, detailed mechanical drawings necessary
- Acknowledge essential collaboration between the four laboratories

-


Stripline Kicker - Transverse Uniformity

- Isolines of E_y at steady state
- $\bullet~$ Each line separated by 2%
- Wider electrodes, to ensure high field uniformity, cause overall dimensions to be larger in order to maintain 50 Ω characteristic impedance
- Note, in model vertical is \hat{y} direction

Stripline Kicker - Coupling Impedance and Matching

