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“The” ν Standard Model

• 3 light (mi <1 eV) Majorana Neutrinos: ⇒ only 2 δm2

• Only Active flavors (no steriles): e, µ, τ

• Unitary Mixing Matrix:
3 angles (θ12, θ23, θ13), 1 Dirac phase (δ), 2 Majorana phases (α2,α3)

|νe, νµ, ντ〉Tflavor = Uαi |ν1, ν2, ν3〉Tmass

Uαi =




1

c23 s23

−s23 c23








c13 s13e−iδ

1
−s13eiδ c13








c12 s12

−s12 c12

1








1

eiα

eiβ





Atmos. L/E µ→ τ Atmos. L/E µ↔ e Solar L/E e→ µ, τ 0νββ decay

500km/GeV 15km/MeV
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Reactor/Accelerator Sector: {13}
CPT ⇒ invariant δ ↔ −δ
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parameter best fit 2σ 3σ

∆m2
21 [10−5eV2] 7.65+0.23

−0.20 7.25–8.11 7.05–8.34

|∆m2
31| [10−3eV2] 2.40+0.12

−0.11 2.18–2.64 2.07–2.75

sin2 θ12 0.304+0.022
−0.016 0.27–0.35 0.25–0.37

sin2 θ23 0.50+0.07
−0.06 0.39–0.63 0.36–0.67

sin2 θ13 0.01+0.016
−0.011 ≤ 0.040 ≤ 0.056

Table 1. Best-fit values with 1σ errors, and 2σ and 3σ intervals (1 d.o.f.) for
the three–flavour neutrino oscillation parameters from global data including solar,
atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS)
experiments.
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Mass Spectrum:

• Quasi-Degenerate ?

• Hierarchical ?

• Normal or Inverted ?

Mixings:

• Deviations from UTri−Bi−Max

sin2 θ13, (sin2 θ23 − 1/2), (sin2 θ12 − 1/3)

• Relationship between these deviations and

VCKM − 1

if any ?

• Magnitude and sign of CPV:

∝ sin θ13 sin δ
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-  Of the order of 5 models have similar values for 
    in the interval 0.001 - 0.08. 
-  Only lepton flavor models allow   

•  No smoking gun apparently exists to rule out any type of model
    based on accurate data for             alone.

•  Most models prefer                         rather than 0.333 for   
    TBM in agreement with present best value of 0.312.

•  Most models prefer                          compared with the best
    fit value of 0.44

sin2 θ23 ≥ 0.50

sin2 θ12 ≤ 0.31

•  Effective mass plots for perturbed TBM mixing show a clear
    separation of the normal and inverted ordering distributions.

sin2 θ13
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•  It is clear that very accurate determination of the three
    mixing angles and eventually the three CP-violating phases
    will be required to pin down the most viable model(s).

sin2 θ12 ! 0.0001

MODELS:
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Figure 18: sin2(2θ13) sensitivity limit for the detectors installation scheduled scenario

There are a number of important observations which can be gleaned from Figure 21. First
of all, assume that Double Chooz starts as planned (solid Double Chooz curves). Then it will
quickly exceed the sin2 2θ13 discovery reach of MINOS and CNGS, especially after the near detector
is online (left panel). It will be the most sensitive experiment until at least 2011 and its sin2 2θ13

discovery potential is remarkable. In some scenarios, like inverted mass hierarchy and specific values
of δCP, the reactor measurement would have the best discovery potential. Note, that even the far
detector of Double Chooz alone would improve the current bounds on sin2 2θ13 considerably down
to 0.04 after 4 years and 0.03 after 10 years at the 90% confidence level. The information gained
by Double Chooz can also be used for a fine-tuning of the running strategy of second generation
superbeams with anti-neutrinos. If a finite value of sin2 2θ13 were established at Double Chooz, the
superbeam experiments could possibly avoid the time consuming (due to lower cross sections) anti-
neutrino running and gain more statistics with neutrinos. The breaking of parameter correlations
and degeneracies could in this case be achieved by the synergy with the Double Chooz experiment.

The Chooz reactor complex even allows for a very interesting upgrade, called Triple Chooz [42].
There exists another underground cavern at roughly the same distance from the reactor cores as
the Double Chooz far detector. A 200 t detector could be constructed there without requiring
significant civil engineering efforts. This upgrade would in principle be equivalent to the Reactor-
II setup described in Reference [3]. Figure 21 shows that it could play a leading role, since its
sensitivity is unrivaled by any of the first generation beam experiments for the next decade and
even the discovery potential is excellent and covers more than 1/2 of the region superbeams can
access. In the case of a value of sin2 2θ13 not too far below the current CHOOZ bound, this might
even lead to the possibility to restrict the CP parameter space at superbeams for large enough
luminosities. The advantage offered by this staged approach compared to other reactor projects

36

They are the most powerful reactor type in operation in the world. One unusual characteristic of
the N4 reactors is their ability to vary their output from 30% to 95% of full power in less than
30 minutes, using the so-called gray control rods in the reactor core. These rods are referred to as
gray because they absorb fewer free neutrons than conventional (“black”) rods. One advantage is
greater thermal homogeneity. A total of 205 fuel assemblies are contained within each reactor core.
The entire reactor vessel is a cylinder 4.27 m tall and 3.47 m diameter. The first reactor started
full-power operation in May 1997, and the second one in September of the same year.

The Double Chooz experiment will employ two almost identical detectors of medium size, each
containing 10.3 cubic meters of liquid scintillator target doped with 0.1% of gadolinium (see Sec-
tion 4). The neutrino laboratory of the first CHOOZ experiment,1 located 1.05 km from the two
cores of the Chooz nuclear plant, will be used again (see Figure 3). This is the main advantage of
this site compared with other locations. We label this site the far detector site or Double Chooz-

Figure 1: Overview of the experiment site.

far. A sketch of the Double Chooz-far detector is shown in Figure 5. The Double Chooz-far site
is shielded by about 300 m.w.e. of 2.8 g/cm3 rock. It is intended to start taking data at Double
Chooz-far at the beginning of 2008.

1For clarity, the first reactor neutrino experiment conducted at the Chooz reactor is herein referred to in uppercase.
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The entire reactor vessel is a cylinder 4.27 m tall and 3.47 m diameter. The first reactor started
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The Double Chooz experiment will employ two almost identical detectors of medium size, each
containing 10.3 cubic meters of liquid scintillator target doped with 0.1% of gadolinium (see Sec-
tion 4). The neutrino laboratory of the first CHOOZ experiment,1 located 1.05 km from the two
cores of the Chooz nuclear plant, will be used again (see Figure 3). This is the main advantage of
this site compared with other locations. We label this site the far detector site or Double Chooz-
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far. A sketch of the Double Chooz-far detector is shown in Figure 5. The Double Chooz-far site
is shielded by about 300 m.w.e. of 2.8 g/cm3 rock. It is intended to start taking data at Double
Chooz-far at the beginning of 2008.
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even lead to the possibility to restrict the CP parameter space at superbeams for large enough
luminosities. The advantage offered by this staged approach compared to other reactor projects
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1 − 〈P (νe → νe)〉 ∼ 1.0 − 3.0% at 90% CL

〈P (νµ → νe)〉 ∼ 0.5 − 1.0% at 90% CL
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and related processes:

CP

νµ → νe ⇐⇒ ν̄µ → ν̄e

T $ CPT across diagonals $ T

νe → νµ ⇐⇒ ν̄e → ν̄µ

CP

CPT across diagonals:

• First Row: Superbeams where νe contamination ∼1 %

• Second Row: ν-Factory or β-Beams, no beam contamination

Even in matter, a vestige of CPT exists:
Instead of switch matter to anti-matter, switch neutrino hierarchy !!!
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sin2 θ13 from LBL:
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νµ → νe

Pµ→e =
∣∣∣

∑
j U∗µj Ueje

−im2
jL/2E

∣∣∣
2

Elimate U∗µ1Ue1

using unitarity of U.
Use ∆ij = δm2

ijL/4E = 1.27δm2
ijL/E

Pµ→e =
∣∣ 2U∗µ3Ue3 sin∆31e−i∆32 + 2U∗µ2Ue2 sin∆21

∣∣2

Square of Atmospheric+Solar amplitude:

U∗µ3Ue3 = s23s13c13e∓iδ for ν and ν̄:

Approx. U∗µ2Ue2 ≈ c23c13s12c12 +O(s13):

Pµ→e ≈
∣∣ 2s23s13c13 sin∆31e−i(∆32±δ) + 2c23c13s12c12 sin∆21

∣∣2

Interference term different for ν and ν̄: CP violation !!!
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Vacuum LBL:

Pµ→e ≈ |
√

Patme−i(∆32±δ) +
√

Psol |2

0 when ∆31 = π/2

0 in vacuum

a = GF Ne/
√

2 = (4000 km)−1, ∆ij = |δm2
ij|L/4E

and ± = sign(δm2
31)

⇑
⇑

2θ13
θcrit

∼ (aL)θ13

⇓
⇔

∼ ∆31 cot ∆31
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2
√

PatmPsol cos(∆32 ± δ) = 2
√

PatmPsol cos∆32 cos δ (9)

∓2
√

PatmPsol sin ∆32 sin δ (10)

∆ij = δm2
ijL/4E

cos(∆32 ± δ) = cos ∆32 cos δ ∓ sin ∆32 sin δ (11)

CPC only CPV

P = Psol
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Vacuum LBL:

Pµ→e ≈ |
√

Patme−i(∆32±δ) +
√

Psol |2

0 when ∆31 = π/2

0 in vacuum

a = GF Ne/
√

2 = (4000 km)−1, ∆ij = |δm2
ij|L/4E

and ± = sign(δm2
31)

⇑
⇑

2θ13
θcrit

∼ (aL)θ13

⇓
⇔

∼ ∆31 cot ∆31
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2
√

PatmPsol cos(∆32 ± δ) = 2
√

PatmPsol cos∆32 cos δ (9)

∓2
√

PatmPsol sin ∆32 sin δ (10)

∆ij = δm2
ijL/4E

cos(∆32 ± δ) = cos ∆32 cos δ ∓ sin ∆32 sin δ (11)

CPC only CPV

P = Psol
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P (νµ → νe) = | U∗
µ1e

−im2
1L/2EUe1 + U∗

µ2e
−im2

2L/2EUe2 + U∗
µ3e

−im2
3L/2EUe3 |2

= |2U∗
µ3Ue3 sin ∆31e

−i∆32 + 2U∗
µ2Ue2 sin ∆21|2

= |
√

Patme−i(∆32+δ) +
√

Psol|2

where
√

Patm = sin θ23 sin 2θ13 sin ∆31
and

√
Psol ≈ cos θ23 sin 2θ12 sin ∆21

Pµ→e ≈ Patm + 2
√

PatmPsol cos(∆32 ± δ) + Psol (6)

Pµ→e ≈ Patm + 2
√

PatmPsol cos∆32 cos δ + Psol (7)

∓2
√

PatmPsol sin ∆32 sin δ (8)

P = Psol
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P (νµ → νe) ≈ |
√

Patme−i(∆32+δ) +
√

Psol|2

In Vacuum:
√

Patm =sin θ23 sin 2θ13 sin∆31

√
Psol =cos θ23 sin 2θ12 sin∆21

∆ = δm2L
4h̄cE = 1.27δm2L

4E

For L = 1200 km
and sin2 2θ13 = 0.04
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x 3

P (νµ → νe) ≈ |
√

Patme−i(∆32+δ) +
√

Psol|2

√
Patm =sin θ23 sin 2θ13 sin∆31

√
Psol =cos θ23 sin 2θ12 sin∆21
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P (νµ → νe) ≈ |
√

Patme−i(∆32+δ) +
√

Psol|2

In Vacuum:
√

Patm =sin θ23 sin 2θ13 sin∆31

√
Psol =cos θ23 sin 2θ12 sin∆21

∆ = |δm2|L
4h̄cE = 1.27|δm2|L

4E

For L = 1200 km
and sin2 2θ13 = 0.04
phase varies
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In Matter:
√

Patm =sin θ23 sin 2θ13
sin(∆31−aL)
(∆31−aL) ∆31

√
Psol = cos θ23 sin 2θ12

sin(aL)
(aL) ∆21
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Pµ→e ≈ |
√

Patme−i(∆32±δ) +
√

Psol |2

0 when ∆31 = π/2

0 in vacuum

a = GF Ne/
√

2 = (4000 km)−1, ∆ij = |δm2
ij|L/4E

and ± = sign(δm2
31)

⇑
⇑

2θ13
θcrit

∼ (aL)θ13

⇓
⇔

∼ ∆31 cot ∆31
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± = sign(δm2
31), a = GF Ne/

√
2 ≈ (4000 km)−1

P (ν̄, δm2
31, δ) = P (ν, −δm2

31, δ+π)

dashes ⇔ solid and solid ⇔ dashes

a → −a and δ → −δ

Anti-Nu: Normal Inverted
dashes δ = π/2
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√
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⇑
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⇓
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P (νµ → νe) ≈ |
√

Patme−i(∆32+δ) +
√

Psol|2

In Vacuum:
√

Patm =sin θ23 sin 2θ13 sin∆31

√
Psol =cos θ23 sin 2θ12 sin∆21

∆ = δm2L
4h̄cE = 1.27δm2L

4E

For L = 1200 km
and sin2 2θ13 = 0.04
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The strategy: off-axis NuMI beam

! Fermilab – Ash River

! 14 mrad off-axis

! 810 km baseline

    

E! !
0.43" m#

1" " 2$ 2

NOvA

π
0 suppression
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0.4  upgrade to  2 MW
Karol Lang, University of Texas,NOvA, XII International Workshop on “Neutrino Telescopes”, Venice, March 6-9, 2007 9

The strategy: off-axis NuMI beam

! Fermilab – Ash River

! 14 mrad off-axis

! 810 km baseline

    

E! !
0.43" m#

1" " 2$ 2

NOvA

π
0 suppression

〈P (νµ → νe)〉 ∼ 0.5 − 1.0% at 90% CL
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NOvA

(off-axis)
!"#$%&'()')%*+

Underground Lab.

DUSEL

MiniBooNE

SciBooNE

MINERvA

MINOS (on-axis)

1300 km

735 km

Powerful Beam

(Project X)

Huge Detector

(LAr or/and Water)

= Proton Decay Detector



Beyond the First Oscillation Maximum:

Broadband Beam: Same L, Lower E Fermilab to DUSEL

Narrow Band Beam: Same E, Longer L T2KK
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Beyond the First Oscillation Maximum:

Broadband Beam: Same L, Lower E Fermilab to DUSEL

Narrow Band Beam: Same E, Longer L T2KK

In VACUUM the SAME but NOT in MATTER

sin2 2θ13 = 0.04

L=1200km E=0.6 GeV

vacuum ⇐

⇐ same height
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11

Current draft layout of 4850 level

3 x 100 kT H20 Detector

October 16,2008 R. W. Kadel: DUSEL 

Infrastructure

11

Current draft layout of 4850 level

3 x 100 kT H20 DetectorSite consideration conclusion

None of the physics signatures requires a depth greater than the 
~4850 ft level at Homestake (~4300 meters-water-equivalent). We 
therefore recommend that geotechnical studies for the large detector 
be carried out at the 4850 ft level as soon as possible. This depth is 
sufficient to carry out an excellent physics program, and takes the 
best advantage of the infrastructure and rock conditions at the 
Homestake Mine.

Thursday, March 5, 2009
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FIG. 9: Simulation of detected electron neutrino (top plots) and anti-neutrino (bottom plots) spectrum (left

for normal hierarchy, right for reversed hierarchy) for 3 values of the CP parameter δCP, −45o, 0o, and

−45o, including background contamination. This simulation is for 300 kT of water Cherenkov detector with

the performance described in Section 10.1. This is for an exposure of 30×1020 POT for each neutrino and

anti-neutrino running. The hatched histogram shows the total background. The νe beam background is also

shown. The other parameters and running conditions are shown in the figure.
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WATER CERENKOV: 300 KT

Normal Invertedbeam NC bkg

ν ν̄
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Geordi La Forge:
in “The Enemy”

Star Trek: The Next Generation

The visor “sees”
Neutrinos!!!
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Evolution of the Liquid Argon Physics Program

R&D

R&D Physics

R&D Physics

R&D Physics

Physics !!!

Luke & Bo

ArgoNeuT
microBooNE

LAr5
near

Yale TPC

far

M x N = 100 kT

Purity, electronics development

Underground safety, cryo operation,
TPC performance, reconstruction

Cold electronics, evacuation
requirement, tank construction,
 insulation

Large Mass operation,
Technical & cost scaling

“phased R&D program”



Liquid Argon Impact 
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(Note: SK ~ 150 kton yr) 

Go BIG to make a big improvement )*+,-&./012+&3456&781+292&:2/9&62;1<+2&
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FIG. 9: Simulation of detected electron neutrino (top plots) and anti-neutrino (bottom plots) spectrum (left

for normal hierarchy, right for reversed hierarchy) for 3 values of the CP parameter δCP, −45o, 0o, and

−45o, including background contamination. This simulation is for 300 kT of water Cherenkov detector with

the performance described in Section 10.1. This is for an exposure of 30×1020 POT for each neutrino and

anti-neutrino running. The hatched histogram shows the total background. The νe beam background is also

shown. The other parameters and running conditions are shown in the figure.
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LIQUID ARGON: 100KT
Normal Invertedbeam NC bkg

ν ν̄
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Sensitivity: 

 LAr 100kt  3+3 yrs   20e20 POT/yr



               

Neutrino Factory Schematic

4 MW
Proton
Source

Hg-Jet 
TargetDecay 

Channel

Initial 
Cooler

Buncher
ν

Pre Accel
-erator

Acceleration

Storage
Ring

5-10 
GeV

10-25
GeV

1.5-5 GeV

Project X 
upgraded
to 4MW with 
rebunching ring to 
get right beam 
structure

m
uo

n 
so

ur
ce

– Proton Source
• primary beam on 
production target

– Target, Capture, and Decay
• create π; decay into µ

– Bunching & Phase Rotation
• reduce ΔE of bunch

– Cooling
• reduce transverse 
emittance

– Acceleration
• 130 MeV → ENF

– Storage Ring
• store for 500 turns; long 
straight section



               

If θ13 is Small

• Choose a NF energy of 25 GeV & a very long baseline 
(e.g. ~3000km) 

• A NF would enable up to ~ x100 improvement in 
sensitivity c.f. a superbeam 



2-4, Jun. 2008 Melbourne Neutrino Theory Workshop 6/19

f

Non-Standard Interaction

f

f

New Physics

f

If new physics scale ~  1(10) TeV

Naive Estimation

Non-Standard neutrino Interaction

Wolfenstein ’78, Grossman ’95, Berezhiani-Rossi ’02

and many people…



2-4, Jun. 2008 Melbourne Neutrino Theory Workshop 7/19

We concentrated on effects of NSI in ! propagation in matter

Valle, Gago-Guzzo-Nunokawa-Teves-Zukanovich Funchal

• εµτ and εeτ can be constrained by short baseline experiment.

• and/or a Neutrino Factory is needed all values of sin2 θ13 !
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A Longer Term Muon Vision for Fermilab



• Assuming a new gauge boson: Z’
• examples: SSM, E6, LRM
• 5σ discovery limits: 4-5 TeV        

at LHC (@ 300 fb-1)

• For a narrow resonance with 
2ΔEbeam /Γresonance << 1:

 Minimum Luminosity for Physics:
The integrated luminosity required to produce 1000  

μ+μ- -> Z’ events on the peak 

Hence minimum luminosity -> 0.5-5.0 x 1030 cm-2 sec-1 
for M(Z’) -> 1.5-5.0 TeV 

→ Rpeak = (2J + 1)3
B(µ+µ−)B(visible)

α2
EM

E. Eichten, “The Basics of Muon Collider Physics”
 (Fermilab-Pub-09-225-T) 



Physics at the Intensity Frontier:

Stephen Parke, Fermilab, June 4 2009

• Neutrinos

• Muons

• Kaons, Anti-protons . . .
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µ + N → e + N

(g − 2)µ
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• Kaons

Theo(SM)×1010 Exp.×1010 Experiment
K+ → π+νν̄ 0.85± 0.07 1.73+1.15

−1.05 BNL-E787/949
KL → π0νν̄ 0.28± 0.04 < 670 KEK-391
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• Kaons

Theo(SM)×1010 Exp.×1010 Experiment
K+ → π+νν̄ 0.85± 0.07 1.73+1.15

−1.05 BNL-E787/949
KL → π0νν̄ 0.28± 0.04 < 670 KEK-391

Experiment Beam Power (kW) # of Events 5 yrs @ SM
K+ → π+νν̄ CERN-NA62 5-10 kW 100 - 200
KL → π0νν̄ KEK-E14 10’s kW phase I (II) = few (10’s)

For Statistical Uncertainties ≈ Theoretical Uncertainties

∼ 1000 events needed in K+ and KL !

with Project X 200+ kW at 8 GeV
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Current Status:

May 29th  2009                                                                                           R. Tschirhart                                                                   FPCP, Lake Placid NY

Kaon Rare Decays and NP 
(courtesy by  Christopher Smith) 

CERN, 11-5-2009 A. Ceccucci 8



“Approved’’  Future Experiments:
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May 29th  2009                                                                                           R. Tschirhart                                                                   FPCP, Lake Placid NY

Project-X:  A blow-torch of 
protons...all the time!

    Moving toward full approval.

           Per year

30

  40 (charged)

250 (charged)

200 (charged)



Summary and Conclusions

The Intensity Frontier has many exciting and compelling physics
opportunities:

• Neutrinos:

Fraction of νe in 3rd neutrino: sin2 θ13

Is atmospheric mixing maximal?: sin2 θ23 <,=, > 1/2
Neutrino Mass Hierarchy: sign δm2

31

CP Violation: sin δ
NSI,..... surprises !!!

• Muons: µ + N → e + N and (g − 2)µ

• Kaons: K+ → π+νν̄ and KL → π0νν̄

• Anti-Protons, ......
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