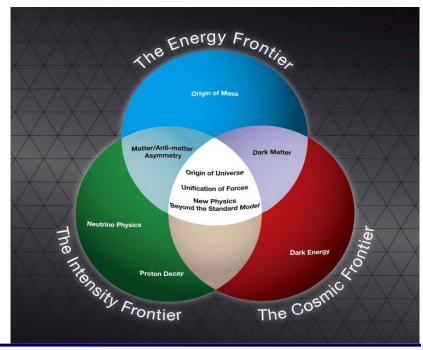


Outline

- Evolution of the Fermilab Complex
- Project X Goals and Initial Configuration(s)
- Project X R&D Program
- Relationships to other Programs
- Strategy

Project X website: http://www.fnal.gov/pub/projectx/

Strategic Context: Fermilab and the World Program



Project X Fermilab Long Range Plan

Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics

⇒ The Fermilab strategy is to mount a world-leading program at the intensity frontier, while using this program as a bridge to an energy frontier facility beyond LHC in the longer term.

Evolution of the Fermilab Accelerator Complex

- A multi-MW Proton Source, Project X, is the linchpin of Fermilab's strategy for future development of the accelerator complex.
- Project X provides long term flexibility for achieving leadership on the intensity and energy frontiers
 - Intensity Frontier:

 $NuMI \rightarrow NOvA \rightarrow LBNE/mu2e \rightarrow Project X \rightarrow Rare Processes \rightarrow NuFact$

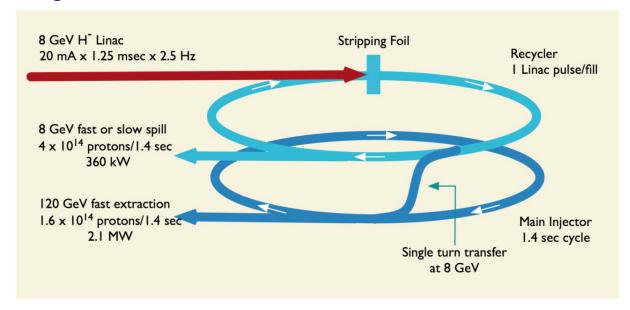
- Continuously evolving world leading program in neutrino and rare processes physics; opportunities for applications outside EPP
- Energy Frontier:

Tevatron → ILC or Muon Collider

- Technology alignment
- Fermilab as host site for ILC or MC

Design Criteria

- A neutrino beam for long baseline neutrino oscillation experiments
 - 2 MW proton source at 60-120 GeV
- High intensity, low energy protons for kaon and muon based precision experiments
 - Operations simultaneous with the neutrino program
- A path toward a muon source for a possible future Neutrino Factory and/or a Muon Collider
 - Requires upgrade potential to 2-4 MW <u>at ~5-15 GeV</u>.



Initial Configuration-1

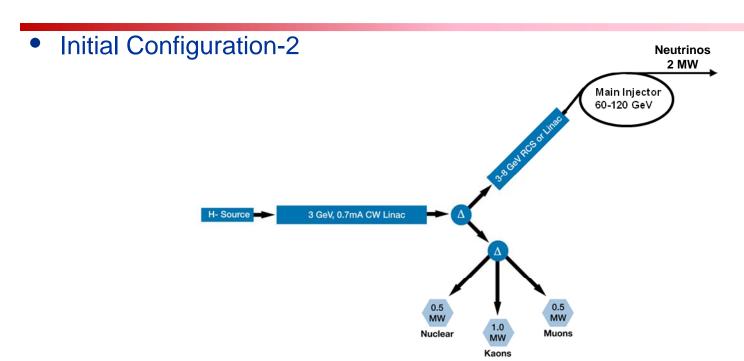
Initial Configuration-1

- Strong alignment with ILC technologies
- Initial Configuration Document-1 V1.1 released March 2009
 - Accompanying cost estimate ~\$1.5B

Initial Configuration - 1 Issues

- IC-1 does a great job of meeting the long baseline neutrino mission, but...
- does not provide a strong platform for mounting a low energy rare processes program
 - The Recycler is ill-suited to providing high intensity slow spilled beam
 - The Debuncher appears limited to <150 kW in this mode
 - ⇒ We believe there is a fundamental limit on the amount of beam power that can be delivered via a resonant extraction system
 - Difficulties supporting multiple users with differing spill structure requirements
 - ⇒ These considerations led to the development of IC-2

Project X Accelerator Requirements: **Rare Processes**



	Proton Energy (kinetic)	Beam Power	Beam Timing
Rare Muon decays	2-3 GeV	>500 kW	1 kHz – 160 MHz
(g-2) measurement	8 GeV	20-50 kW	30- 100 Hz.
Rare Kaon decays	2.6 – 4 GeV	>500 kW	20 – 160 MHz. (<50 psec pings)
Precision K ⁰ studies	2.6 – 3 GeV	> 100 mA (internal target)	20 – 160 MHz. (<50 psec pings)
Neutron and exotic nuclei EDMs	1.5-2.5 GeV	>500 kW	> 100 Hz

Initial Configuration-2

- 3 GeV CW linac provides greatly enhanced rare process program
 - 2-3 MW; flexible provision for beam requirements supporting multiple users
- Options for 3-8 GeV acceleration: RCS or (1.3 GHz) pulsed linac
 - Linac would be 1300 MHz with 4-5 msec pulse length
- Initial Configuration Document-2 in preparation for spring release

Initial Configuration-2 Performance Goals

Linac

Particle Type

Beam Kinetic Energy

Average Beam Current

Linac pulse rate

Beam Power

Beam Power to 3 GeV program

RCS/Pulsed Linac

Particle Type

Beam Kinetic Energy

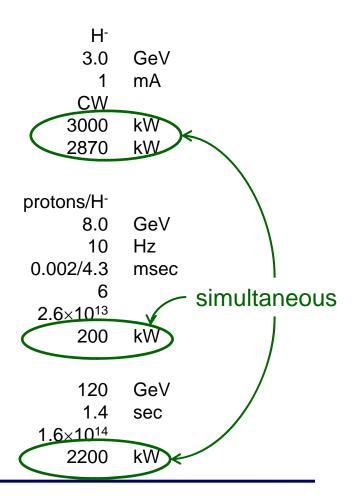
Pulse rate

Pulse Width

Cycles to MI

Particles per cycle to MI

Beam Power to 8 GeV program

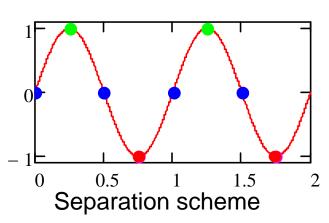

Main Injector/Recycler

Beam Kinetic Energy (maximum)

Cycle time

Particles per cycle

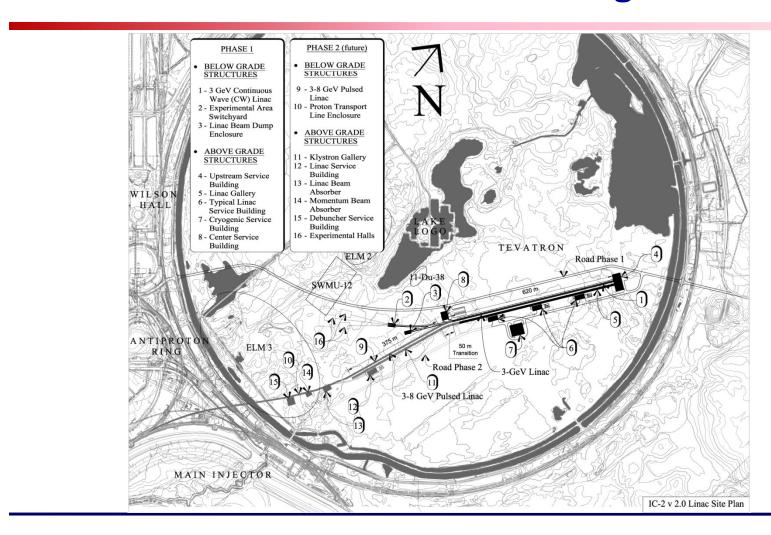
Beam Power at 120 GeV


Initial Configuration-2 Operating Scenario

1 μsec period at 3 GeV

mu2e pulse (9e7) 162.5 MHz, 100 nsec Kaon pulse (9e7) 27 MHz Other pulse (9e7) 27 MHz

400 kW

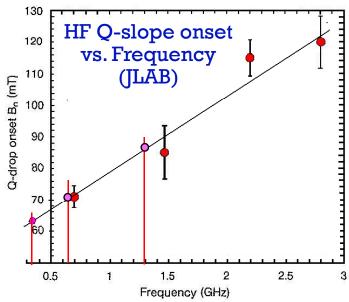

800 kW

800 kW

Initial Configuration-2 Provisional Siting

Initial Configuration-2 Technology Map

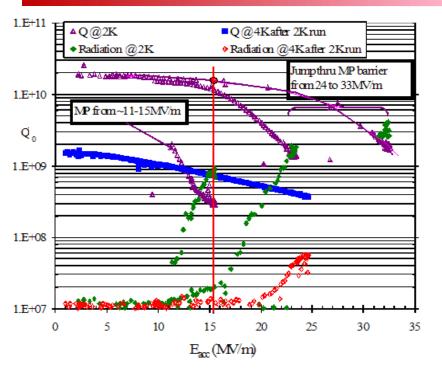
Section	Freq	Energy (MeV)	Cav/mag/CM	Туре
SSR0 (β _G =0.11)	325	2.5-10	26 /26/1	SSR, solenoid
SSR1 (β_G =0.22)	325	10-32	18 /18/ 2	SSR, solenoid
SSR2 (β_G =0.4)	325	32-160	33 /18/3	SSR, solenoid
LB 650 (β_G =0.61)	650	160-520	42 /21/7	5-cell elliptical, doublet
HB 650 $(\beta_G=0.9)$	650	520-2000	64 /8 /8	5-cell elliptical, doublet
ILC 1.3 (β_G =1.0)	1300	2000-3000	64 /8 /8	9-cell elliptical, quad


R&D Program Choice of Cavity Parameters

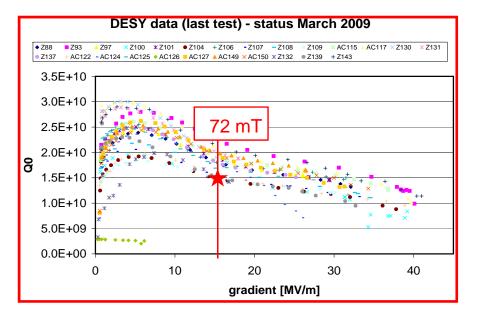
 Identify maximum achievable surface (magnetic field) on basis of observed Q-slope "knee"

- Select cavity shape to maximize gradient (subject to physical constraints)
- Establish Q goal based on realistic extrapolation from current performance

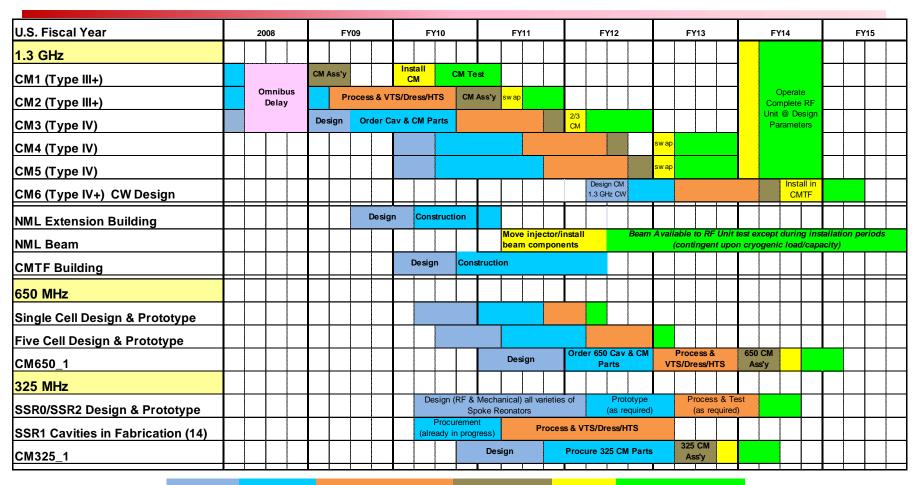
 Goal: <20 W/cavity
- Optimize within (G, Q, T) space


(Initial) Performance Goals

Freq (MHz)	B _{pk} (mT)	G (MV/m)	Q	@T (K)
325	60	15	1.4E10	2
650	72	16	1.7E10	2
1300	72	15	1.5E10	2


R&D ProgramChoice of Cavity Parameters

ILC: \longrightarrow 1.3 GHz $Q_0=1.5-10^{10}$ @2K



Integrated SRF Plan ILC + Project X

Design Procure Process & Assemble Install Commission & Operate

Fermilab Users' Meeting, 2010 - S. HolmeDress & HTS

Integrated SRF Plan ILC + Project X

NML test facility: ILC and Project X R&D

Joint PX/NF/MC Strategy

- Project X shares many features with the proton driver required for a Neutrino Factory or Muon Collider
 - NF and MC require ~4 MW @ 10+ 5 GeV
 - Primary issues are related to beam "format"
 - NF wants proton beam on target consolidated in a few bunches; Muon Collider requires single bunch
 - Project X linac is not capable of delivering this format

⇒ It is inevitable that a new ring(s) will be required to produce the correct beam format for targeting.

Collaboration Plan

- A multi-institutional collaboration has been established to execute the Project X RD&D Program.
 - Organized as a "national project with international participation".
 - Fermilab as lead laboratory
 - International participation via in-kind contributions, established through bi-lateral MOUs. (First MOU with India in place)
 - Collaboration MOU for the RD&D phase outlines basic goals, and the means of organizing and executing the work. Signatories:

ANL	ORNL/SNS	BARC/Mumbai
BNL	MSU	IUAC/Delhi
Cornell	TJNAF	RRCAT/Indore
Fermilab	SLAC	VECC/Kolkota
LBNL	ILC/ART	

 Collaborators to assume responsibility for components and sub-system design, development, cost estimating, and potentially construction.

Strategy/Timeline

- Next six months: Complete all preliminary design, configuration, and cost range information for IC-2
 - ICD-2v2.0
 - Cost estimate
- Continue conceptual development on outstanding technical questions
 - Baseline concept for the chopper
 - Concepts for marrying a 3-8 GeV pulsed linac to CW front end
 - Injection into RCS or Recycler
- Pursue R&D aimed at the CW linac
 - Emphasis of srf development at all relevant frequencies
 - Engage external collaborators and identify roles
- The DOE has advised that the earliest possible construction start is FY2015
 - We are receiving very significant R&D support for Project X and SRF development (~\$35M in FY10, excluding ARRA)
- We believe that we could construct Project X over a five year time period, assuming a commensurate funding profile

⇒ Project X could be up and running ~2020

Summary

- Project X is central to Fermilab's strategy for development of the accelerator complex over the coming decade
 - World leading programs in neutrinos and rare processes
 - Aligned with ILC and Muon Accelerators technology development;
 - Potential applications beyond elementary particle physics
- The design concept has evolved over the last year, providing significantly enhanced physics capabilities
- Current configuration:
 - >2 MW at 60-120 GeV, simultaneous with 3 MW at 3 GeV
 - Flexibility for supporting multiple experiments
 - CW linac is unique for this application, and offers capabilities that would be hard/impossible to duplicate in a synchrotron
- Project X could be constructed over the period ~2015 2019