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MiniBooNE Low-Energy Excess

• MiniBooNE saw a ~3σ νe-like excess between 200 and 600 MeV 
• MiniBooNE’s neutrino result is in tension with global 3+1 model fit
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• MiniBooNE 

‣ Significant fraction of background 
from γ/e− mis-ID 

‣ Systematic error ≈ statistical error  

• MicroBooNE 
‣ Same beam and similar baseline 

‣ LArTPC gives better γ/e− separation, 
better background rejection
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The MicroBooNE Experiment

• Micro Booster Neutrino Experiment 

• 85 ton (active) Liquid Argon Time Projection Chamber 

• Located in the Fermilab Booster Neutrino Beam 

•  νμ→νe appearance experiment 

• >95% detector uptime 

• 6.1×1020 POT on tape in the first 18 months of 
running, of proposed 6.6×1020 POT in three years
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The MicroBooNE Detector
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“Design and Construction of the MicroBooNE Detector”  
JINST 12, P02017 (2017)
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http://iopscience.iop.org/article/10.1088/1748-0221/12/02/P02017
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A Few Words About Deep Learning
• For us, deep learning ≈ convolutional neural networks (CNNs) 

• CNNs have been developed primarily for image analysis; we apply them to 
MicroBooNE event displays 
‣ For more, see T. Wongjirad’s talk from Tuesday (here) 

• I will discuss two uses: classification and semantic segmentation 
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Example of CNN classification, from “ImageNet 
Classification with Deep CNNs”, NIPS (2012)

Example of semantic segmentation, from “Conditional 
Random Fields as Recurrent NNs”, ICCV (2015)

https://indico.fnal.gov/getFile.py/access?contribId=393&sessionId=21&resId=0&materialId=slides&confId=11999
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240
https://arxiv.org/abs/1502.03240
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Definition of the Signal
• Define signal to be events with one lepton and one proton (1l-1p) topology 

‣ Lepton (electron or muon) with kinetic energy >35 MeV 
‣ One proton with kinetic energy >60 MeV (possibly others below that energy threshold) 

• These are “golden events” — low background (~only intrinsic νe, constrained by νμ)
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νe event: signal

K.E.e = 320 MeV 
K.E.p = 123 MeV

K.E.µ = 73 MeV 
K.E.p = 266 MeV

νμ event: used to 
constrain the flux 
and cross-section 
systematics
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Overview of Reconstruction Chain
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PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Vertex Reco
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Reconstruction Chain
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PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Vertex Reco

• PMT pre-cuts reject low-energy 
noise and other backgrounds 

• Keep >96% of neutrinos (based 
on simulations) 

• Reject >75% of background 
(based off-beam data)
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Reconstruction Chain
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Pixel Labeling

Cosmic Tagging 
& ROI Finding
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An Event Display

These low-energy neutrino events are small, and we have lots of cosmics
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K.E.µ = 73 MeV 
K.E.p = 266 MeV

μ−

p

The νμ event from 
a few slides ago
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Cosmic Pixel Tagging

•Cosmic and other background tracks cross the TPC boundary 

• Identify and tag these boundary crossing points 
‣ Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary 

‣ Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane 

‣ Anode/cathode: crossings have specific ∆T between PMT flash and wire signal 

•Build up from end points by following charge using 3D path finding
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Region-of-Interest Finding

After tagging cosmic tracks, draw 3D region-of-interest (ROI) box around untagged pixels
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νe  1e-1p 
K.E.e = 563 MeV 
K.E.p = 110 MeV 
ΔR = 0.33 cm

U Plane
V Plane
Y Plane
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Reconstruction Chain
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Track vs. Shower Pixel Labeling
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Truth label
Track-like 
Shower-like SSNet output

Track-like 
Shower-like

• Goal: separate tracks and showers to 
make the 3D vertex reconstruction and 
track/shower clustering more efficient 

• Semantic segmentation network (SSNet) 
takes in the wire information and labels 
each pixel in the image as “track-
like” (yellow), “shower-like” (cyan), or 
“background” (blue)Wire signal amplitude

K.E.e = 341 MeV 
K.E.p = 161 MeV
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SSNet Performance on Data
• To study the performance of SSNet on data, we ran over a 

sample of selected CC π0 events 
‣ “Study Towards an Event Selection for Neutral Current Inclusive Single π0 Production in MicroBooNE”, 

MicroBooNE Public Note MICROBOONE-NOTE-1006-PUB 

• Here, the proton and muon are correctly labeled as track-like 
• The two γ showers are correctly labeled as shower-like, except 

the beginning “stub” of one is labeled as track-like 

• Overall, SSNet pixel labeling accuracy >90%
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Wire signal amplitude SSNet output

https://www-microboone.fnal.gov/publications/publicnotes/MICROBOONE-NOTE-1006-PUB.pdf
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Reconstruction Chain

16

PMT Pre-Cuts

Particle ID

Track vs. Shower 
Pixel Labeling

Cosmic Tagging 
& ROI Finding

3D Vertex Reco



L. Yates︱DPF 2017

3D Vertex Reconstruction

If both track-like and shower-like pixels are found (e.g., a νe event): 
• For each plane: find endpoint of track where shower is attached 
• Correlate these endpoints across planes to identify 3D region 
• Scan 3D space around the candidate vertex 
• Add a vertex at the 3D point that best matches where the track 

and shower meet across all three planes

17
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3D Vertex Reconstruction
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Preliminary
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U UFigure 27: MIP (blue) and HIP (red) contours are found in the example 1µ1P event. The HIP
contour clusters a collection of proton pixels which have a high pixel intensity. The
single MIP contour encloses all pixels in this track image as they are all above the 20
ADC threshold.

is farthest away from the corresponding hull side is called the “defect point” and is a location
where the cluster is potentially bending and changing direction. The algorithm iteratively
breaks down all clusters into linear segments until no defects remain.
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Figure 28: The convex hull is computed for the MIP contour (blue). A defect is found on one of
the convex hull edges (purple). A line (green) is drawn perpendicular from the hull edge
through the defect point, the kink location, and crosses through the MIP contour. The
line divides the contour into two unique sets.

The collection of defect points are the first set vertex seeds. An example of the convex hull,
and defect line is shown in Fig 28 and the resulting set of broken, linear clusters is shown in
Fig 29. The second vertex seed is found using a principle component analysis (PCA) which
fits the clusters to a straight line hypothesis. The PCA is a linear approximation which
minimizes the perpendicular distance between the data (the pixel points), and the estimate
(the line). A PCA is calculated for each broken cluster separately. Since all clusters have
been broken into linear segments by removing defects a linear approximation is suitable. The
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If there are only track-like pixels (e.g., νμ normalization sample): 
• For each plane: create 2D vertex seeds at any kink points 
• Scan space around each seed to find the best vertex point 
• Combine information from all three planes 
• If the best vertices from each plane are 3D-consistent, add a 

vertex at that 3D point 
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Reconstruction Chain
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Particle Identification

• After 3D vertex reconstruction, cluster pixels attributed to each 
single track or shower coming out of the vertex 

• Feed individual particle clusters into a CNN trained to do single-
particle identification (HighRes GoogLeNet) 

• Led to MicroBooNE’s first collaboration publication! 
‣ “Convolutional Neural Networks Applied to Neutrino Events in a LArTPC”, JINST 12, P03011 (2017)
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Particle Correct ID
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http://iopscience.iop.org/article/10.1088/1748-0221/12/03/P03011/
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Reconstruction Chain
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Topological Sidebands
• In general, a “sideband” study uses events that are outside the 

“analysis box” but have important similarities to events inside it 

• Typically, use events that are similar in their kinematics — instead, 
we consider events that are similar in topology 

• In particular, we want to draw sidebands from data to help us 
understand CNN performance on simulations vs. detector data 

• We plan to use these samples to: 
‣ Test simulation vs. data agreement 

‣ Study efficiencies 

• Examples of topological sidebands 
‣ CC π0 — has a 1μ-1p vertex like νμ events; already used to test SSNet 

‣ NC π0, where one photon converts near the vertex — has 1e-1p topology like νe 

‣ Stopping muons — track + EM shower topology, like νe 

‣ “Chimera” events

22
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Chimera Events
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• Chimera events are made by “copy-pasting” single-particle components 
from cosmic ray data that are selected and combined to create neutrino-like 
events (in terms of topology) 
‣ Use proton and stopping muon for νμ, proton and electron (or EM shower) for νe 

‣ Allow for but want to minimize spatial translation; do not allow rotation 

‣ Truncate the entering portion of muon tracks, so they appear contained within the fiducial volume 
of the detector 

• They can provide a sample of data-based events that cover the entire 
physics parameter space of interest for our signal 

• Above: One of the first νμ-like chimeras
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Summary
• Fully automated reconstruction chain for low-energy neutrino 

events, which includes traditional and deep learning algorithms 
‣ Reject cosmic backgrounds 
‣ Find the neutrino interaction within the event 
‣ Separate tracks and showers, cluster 
‣ Reconstruct 3D vertex 
‣ Identify individual particles 

•  Full 3D reconstruction in progress 
‣ dE/dx, event selection 
‣ Physics! 

• Efficiency and systematics studies in progress 

• Important development for upcoming LArTPC programs 

Thank you!
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The MicroBooNE Detector
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“Design and Construction of the MicroBooNE Detector”  
JINST 12, P02017 (2017)
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A Few Words About Deep Learning

• Convolutional neutral networks have several important properties 
‣ “Neurons” scan over the image looking at a limited set of pixels at each point 

‣ They “learn” local, translationally invariant features 

‣ Each layer of neurons builds on the features found by the previous ones to reach 
increasing levels of complexity/abstraction 

• In the above, the black-and-white boxes show the “activation” of 
neurons in response to the images; the neuron highlighted on the 
right responds to faces, while the one on the left responds to text
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https://www.youtube.com/watch?v=AgkfIQ4IGaM
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More on Deep Learning
• See T. Wongjirad’s talk from Tuesday (here)
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https://indico.fnal.gov/getFile.py/access?contribId=393&sessionId=21&resId=0&materialId=slides&confId=11999
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• Keep >96% of neutrinos (based on simulations) 
• Reject >75% of background (based on rejection of off-beam data)

PMT Pre-Cuts
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•Reject: Random, single-photoelectron noise (~200 kHz) 
‣ No time correlation between these single-photoelectron pulses 

‣ Require 20 photoelectrons in 93.75 ns — this becomes the definition of a “signal” 

•Reject: In-time flash caused by Michel electron, from decay of a cosmic muon 
‣ Require no signal for 2 µs before the beam window 

•Reject: PMT-based noise 
‣ Limit the total amount of the light collected by a single PMT to <60% of the total light 

•Keep >96% of neutrinos (based on simulations) 
•Reject >75% of background (based on rejection of off-beam data)

PMT Pre-Cuts
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Cosmic Pixel Tagging

• Cosmic and other background tracks cross the TPC boundary 

• Identify and tag these boundary crossing points 
‣ Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary 

‣ Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane 

‣ Anode/cathode: crossings have specific ΔT between PMT flash and wire signal 

• Connect end points by following the charge using 3D path finding
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Cosmic Pixel Tagging
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• Cosmic and other background tracks cross the TPC boundary 

• Identify and tag these boundary crossing points 
‣ Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary 

‣ Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane 

‣ Anode/cathode: crossings have specific ΔT between PMT flash and wire signal 

• Connect end points by following the charge using 3D path finding
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Cosmic Pixel Tagging
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min ΔT

max ΔT

• Cosmic and other background tracks cross the TPC boundary 

• Identify and tag these boundary crossing points 
‣ Top/bottom: crossings deposit charge on triplets of wires that meet at the boundary 

‣ Upsteam/downsteam: crossings deposit charge on the first/last wires on the Y plane 

‣ Anode/cathode: crossings have specific ΔT between PMT flash and wire signal 

• Connect end points by following the charge using 3D path finding
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Examples of Topological Sidebands
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