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1. Introduction Both hierarchy
) patterns are
. ] allowed
Framework of 3 flavor v oscillation
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® Both mass
hierarchies
are allowed
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Next task is to measure sign(Amz,,),
TCI4'923 and 8
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normal inverted
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—* These quantities are expected to
be determined in future experiments
with huge detectors.
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Motivation for research on New Physics

High precision measurements of v
oscillation in future experiments can be
used to probe physics beyond SM by
looking at deviation from SM+m,, (like at B

factories).
— Research on New Physics is important.

5/23



Phenomenological scenarios of New Physics

Scenarios

Possible magnitude relative to
standard value

Light sterile
neutrinos

0(10%)

Non Standard
Interactions in
propagation

e-T: 0(100%)
u: O(1%)

NSI at production /
detection

/ 0(1%)

Violation of unitarity
due to heavy
particles

0(0.1%)

While no concrete model i$ known, scenarios with
Non Standard Interactions in propagation could
exhibit the largest effect.




2. New Physics in propagation

vV

Phenomenological New o
Physics considered in this
talk: 4-fermi Non Standard f
Interactions:
Lepr = Gp va¥'vs [l [ vestal corren
interaction

Modification of matter effect

d Ve I 1+ € €ep  Cer |
i— | v, | = Udiag(E‘l,Eg,Eg)U_1+A - Eun  Capr

dt

Vr €re €ru  Err

A =v2G»N,| Ne = electron density NP



e Constraints on g, for expts on Earth

Davidson et al., JHEP 0303:011,2003; Berezhiani, Rossi, PLB535 (‘02)
207; Barranco et al., PRD73 (‘06) 113001; Barranco et al., arXiv:0711.0698

Biggio et al., JHEP 0908, 090 (2009) w/o 1-loop arguments

Constraints are weak
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® Summary of the constraints on €.
To a good approximation, we are left with 3
independent variables €¢e, | €e; |, arg(€er):

0
l€er|?/ (1 + €ce)

Furthermore, vam data
implies

|tan[3|=|831/(1 +See)| <1.5
@2.50CL

Friedland-Lunardini, -
PRD72:053009,’05 Allowed

Region
Allowed regionin| -
(8865 | 8617 |)




3. Sensitivity of vaim at SK&HK to NSl in
propagation
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Deviation from the standard case is significant
mainly for 10GeV < E <100 GeV -



Here we will
discuss SK & HK
because

OSK & (particularly)
HK has
considerable
#(events) for 10GeV
<E <100 GeV
®0One of the authors
(OY) worked on SK
before

Energy spectrum of

atmospheric Vv at SK

Ii




Zz (gee 1| gez- |) — mln anaIySiS
parameters - i On|y

) > N2 (2,,2,,)~ N, (data)]* i Rate

HK :
: N.
Azz(gewlger |): min Z[ ! (gee’geT

parameters “= o

)N, (std)]* i Rate &

spectrum
analysis

Parameters #(events)yk
Fixed: 012, 013, Am254 = 20 x #(events)gk

Marginalized: 023, Am?31, O, arg(€e:)




Constraint by SK on &g, | €e¢ |

® The standard
case (g,5=0) is not
best fit point: This
may be because we
perform only the
rate analysis (See
discussions for HK
below).

® The 2.50
excluded region

(Jtanf3]<0.7)
improves the old
one (|tanf}|<1.5) by
Friedland-Lunardini
in 2005.




SK 4438
days IH
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Sensitivity of HK: (1) Rate analysis

Fukasawa-0OY
arXiv.1503.08056

HK 0.?0 = rate NH #(events)yk
| = 20 x #(events)gk

std=Best fit * | § ® The region | €¢¢ |
>1.5 is excluded.

The 2.56 excluded
region is |tanf3|<0.4.




HK
4438

0.5c M@ rate IH

® The case of IH
has a much larger
allowed region.
This may be
because the
resonance occurs
for the v channel
which has less
#(events) than v.




Sensitivity of HK: (2) Spectrum analysis

HK 050- 2 energy "|HK  050mm 2 energy

14438 | 1S mm binsNH | | .s1 4438 | 19 bins IH

days 2c
2.56
Rledl

® With the information of the energy spectrum, the
allowed region becomes much smaller (Note the
difference in scale). The 2.5¢ excluded region is

|tan]|<0.1.




(@) ‘ rate NH - = Behaviors of y2 (NH) for multi-
| | # GeV: Rate VS Spectrum

Destructive phenomenon
between Low & High
energy bins — Information
on energy spectrum is
important

2
X multi-GeV

(c) 2bin NH

(e) 2bin NH
combined

2
A multi-GeV
2
X multi-GeV




2
X" multi-GeV

,'\

L

—
_ (b)\\rate IH

2
X multi-GeV

(f) 2bin IH

" combined

Behaviors of 2 (IH) for multi-
GeV: v+v vs individual v&v

Destructive phenomenon
between v & vy — Distinction
between A & V\gives




Behaviors of #(events) for Destructive phenomenon
multi-GeV: v+v vs individual § petweenv & Vv

@) (b)
(gee:lge’cl)_z(zao) ] (eeeilge’cl)z(zio)
multi-GeV multi-GeV

IH ANﬁ

Energy Bins

2 ZeMQEie Bins

€. le.)=2,0) |||~ Theoretical understanding
multi-GeV in terms of oscillation

A ANND - B brobabilities is under study.

Energy Bins

-

Angsle Bins




Sensitivity of HK: (3) Spectrum analysis in the

Relatively good sensitivity
to NSI for |gge|<2

presence of NSI

/
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4. Conclusions

®Under the assumptions &g, =&, = €,;; =0 &
E::=| €er |2/(1+Eee), We studied sensitivity to NSI
in propagation of Vi, at SK & HK

®The constraint [tanp| :=|€.;/(1+E..)] <0.7 from SK

Vatm for 4438 days was improved the previous

result [tanB| <1.5 obtained by Friedland-Lunardini
in 2005.

® The analysis of SK was performed with
energy rate only. This may be the reason why
the allowed region is large due to the
destructive phenomenon.




® Future observations of Vi, at HK are
expected to improve the constraint: |tanp| <0.2.
® The information of the energy spectrum is
important to reduce the allowed region.

® The individual information of v &vis

important to reduce the allowed region of gg¢
(but not ¢,.).—Further efforts to separate v & v

should be made.

® In the presence of NSI, HK has Relatively
good sensitivity to NSI for |gge| < 2.




Backup slides
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Constraints on NSI from high energy
behavior of v,¢, data Oki-Yasuda PRD82 (‘10) 073009

® Standard case . o (Amg, L
) 1 — Py, — v,) =sin” 20, sin 2
with N, =2 W= ) : AE

® Standard case with N,,=3

Am3\ 2, ALY ‘
D) v ( 77?31) |-si1r12 2093 (6132 ) + 555 sin” 20,3 sin* ( 5

2AF

l

®Deviation of 1-P(v,—v,) due to NSI contradicts with data

C1+ cooL? + co1 SiHZ(CQQL)
E E?

High energy v.m data is well described by standard
scheme = constraints on NSI: o] €1, |C4] &K1

1 - Plyy =) ~Co+




| €,¢ |<<1: Already shown by Fornengo et al. PRD65, 013010, *02;
onzalez-Garcia&Maltoni, PRD70, 033010, ’04; Mitsuka@nufact08

| Eup |<<1: Already shown from other expts. by Davidson et al.

JHEP 0303:011, '03

Already shown by
Friedland-Lunardini,
PRD72:053009,’05
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