Non-standard interactions in propagation through atmospheric neutrinos

Osamu Yasuda Tokyo Metropolitan University

July 23, 2015 Nu @ Fermilab

Based on arXiv.1503.08056, Fukasawa & OY

- 1. Introduction
- 2. New Physics in propagation
- 3. Sensitivity of v_{atm} at SK&HK to NSI in propagation
- 4. Conclusions

1. Introduction

Framework of 3 flavor v oscillation

Mixing matrix

Functions of mixing angles $\theta_{12},~\theta_{23},~\theta_{13},$ and CP phase δ

$$\begin{pmatrix} \mathbf{v}_e \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \mathbf{U}_{e1} & \mathbf{U}_{e2} & \mathbf{U}_{e3} \\ \mathbf{U}_{\mu 1} & \mathbf{U}_{\mu 2} & \mathbf{U}_{\mu 3} \\ \mathbf{U}_{\tau 1} & \mathbf{U}_{\tau 2} & \mathbf{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \end{pmatrix}$$

All 3 mixing angles have been measured (2012):

$$heta_{12}\cong rac{\pi}{6}$$
, $\Delta m_{21}^2\cong 8 imes 10^{-5}\,\mathrm{eV}^2$

$$egin{aligned} eta_{23} &\cong rac{\pi}{4}, \mid \Delta m^2_{32} \mid \cong 2.5 imes 10^{-3} \, \mathrm{eV}^2 \end{aligned}$$

$$oldsymbol{ heta_{13}}\cong\pi$$
 / 20

Next task is to measure sign(Δm^2_{31}), $\pi/4-\theta_{23}$ and δ

→ These quantities are expected to be determined in future experiments with huge detectors.

Motivation for research on New Physics

High precision measurements of v oscillation in future experiments can be used to probe physics beyond SM by looking at deviation from SM+ m_v (like at B factories).

→ Research on New Physics is important.

Phenomenological scenarios of New Physics

Scenarios	Possible magnitude relative to standard value
Light sterile neutrinos	O(10%)
Non Standard Interactions in propagation	e-τ: O(100%) μ: O(1%)
NSI at production / detection	O(1%)
Violation of unitarity due to heavy particles	O(0.1%)

While no concrete model is known, scenarios with Non Standard Interactions in propagation could exhibit the largest effect.

2. New Physics in propagation

Phenomenological New Physics considered in this talk: 4-fermi Non Standard Interactions:

$$\mathcal{L}_{eff} = G_{NP}^{\alpha\beta} \bar{\nu}_{\alpha} \gamma^{\mu} \nu_{\beta} \bar{f} \gamma_{\mu} f'$$

Modification of matter effect

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{bmatrix} U \operatorname{diag}(E_1, E_2, E_3) U^{-1} + A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{\mu e} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\tau e} & \epsilon_{\tau\mu} & \epsilon_{\tau\tau} \end{pmatrix} \end{bmatrix} \begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

$$A \equiv \sqrt{2}G_F N_e$$
 $N_e \equiv \text{electron density}$

• Constraints on $\varepsilon_{\alpha\beta}$ for expts on Earth

Davidson et al., JHEP 0303:011,2003; Berezhiani, Rossi, PLB535 ('02) 207; Barranco et al., PRD73 ('06) 113001; Barranco et al., arXiv:0711.0698

Biggio et al., JHEP 0908, 090 (2009) w/o 1-loop arguments

Constraints are weak

$$\begin{vmatrix}
|\epsilon_{ee}| \lesssim 4 \times 10^0 & |\epsilon_{e\mu}| \lesssim 3 \times 10^{-1} \\
|\epsilon_{\mu\mu}| \lesssim 7 \times 10^{-2} & |\epsilon_{e\tau}| \lesssim 3 \times 10^0 \\
|\epsilon_{\mu\tau}| \lesssim 3 \times 10^{-1} \\
|\epsilon_{\tau\tau}| \lesssim 2 \times 10^1
\end{vmatrix}$$

• Summary of the constraints on $\varepsilon_{\alpha\beta}$

To a good approximation, we are left with 3 independent variables ε_{ee} , $|\varepsilon_{e\tau}|$, $arg(\varepsilon_{e\tau})$:

$$A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{\mu e} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\tau e} & \epsilon_{\tau\mu} & \epsilon_{\tau\tau} \end{pmatrix}$$

$$A \begin{pmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{\mu e} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{\tau e} & \epsilon_{\tau\mu} & \epsilon_{\tau\tau} \end{pmatrix} \longrightarrow A \begin{pmatrix} 1 + \epsilon_{ee} & 0 & \epsilon_{e\tau} \\ 0 & 0 & 0 \\ \epsilon_{e\tau}^* & 0 & |\epsilon_{e\tau}|^2/(1 + \epsilon_{ee}) \end{pmatrix}$$

Furthermore, vatm data **implies**

Allowed region in $(\epsilon_{ee}, | \epsilon_{e\tau} |)$

3. Sensitivity of v_{atm} at SK&HK to NSI in propagation

Deviation from the standard case is significant mainly for 10GeV < E < 100 GeV

Here we will discuss SK & HK because SK & (particularly) **HK** has considerable #(events) for 10GeV < E < 100 GeV One of the authors (OY) worked on SK before

Outline of our Analysis

$$A \equiv \sqrt{2}G_F n_e$$

$$i\frac{d}{dt} \begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{cases} U^{-1} diag \begin{pmatrix} \frac{m_1^2}{2E}, \frac{m_2^2}{2E}, \frac{m_3^2}{2E} \end{pmatrix} U + A \begin{pmatrix} 1+\boldsymbol{\mathcal{E}_{ee}} & 0 & \boldsymbol{\mathcal{E}_{e\tau}} \\ 0 & 0 & 0 \\ \boldsymbol{\mathcal{E}_{e\tau}^*} & 0 & \frac{|\boldsymbol{\mathcal{E}_{e\tau}}|^2}{1+\boldsymbol{\mathcal{E}_{ee}}} \end{pmatrix} \end{cases} \begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix}$$

Black: standard Red: non-standard

$$\sum_{\chi^{2}(\varepsilon_{ee}, |\varepsilon_{e\tau}|) = \min_{\text{parameters}} \sum_{i} \frac{\left[N_{i}^{0}(\varepsilon_{ee}, \varepsilon_{e\tau}) - N_{i} \text{ (data)}\right]^{2}}{\sigma_{i}^{2}}$$

Rate analysis only

$\frac{\mathsf{HK}}{\Delta \chi^{2}(\varepsilon_{ee}, |\varepsilon_{e\tau}|) = \min_{\text{parameters}} \sum_{i} \frac{\left[N_{i}^{0}(\varepsilon_{ee}, \varepsilon_{e\tau}) - N_{i} \text{ (std)}\right]^{2}}{\sigma_{i}^{2}}$

Rate & spectrum analysis

Parameters

Fixed: θ_{12} , θ_{13} , Δm^2_{21}

Marginalized: θ_{23} , Δm^2_{31} , δ , $arg(\epsilon_{e\tau})$

#(events)_{HK} = 20 x #(events)_{SK}

Constraint by SK on ϵ_{ee} , $|\epsilon_{e\tau}|$

- The standard case $(\varepsilon_{\alpha\beta}=0)$ is not best fit point: This may be because we perform only the rate analysis (See discussions for HK below).
- The 2.5σ excluded region ($|\tan\beta|<0.7$) improves the old one ($|\tan\beta|<1.5$) by Friedland-Lunardini in 2005.

Sensitivity of HK: (1) Rate analysis

Fukasawa-OY arXiv.1503.08056

#(events)_{HK} = 20 x #(events)_{SK}

• The region | $\mathcal{E}_{e\tau}$ | >1.5 is excluded. The 2.5 σ excluded region is $|\tan\beta|$ <0.4.

• The case of IH has a much larger allowed region. This may be because the resonance occurs for the √ channel which has less #(events) than v.

Sensitivity of HK: (2) Spectrum analysis

• With the information of the energy spectrum, the allowed region becomes much smaller (Note the difference in scale). The 2.5σ excluded region is $|\tan\beta|$ <0.1.

2

 ϵ_{ee}

20

Behaviors of χ^2 (NH) for multi-GeV: Rate VS Spectrum

Destructive phenomenon between Low & High energy bins → Information on energy spectrum is important

Behaviors of χ^2 (IH) for multi-GeV: $v+\overline{v}$ vs individual $v\&\overline{v}$

Destructive phenomenon between $v \& \overline{v} \rightarrow Distinction$ between $v \& \overline{v}$ gives important information on ϵ_{ee}

Behaviors of #(events) for multi-GeV: $v+\overline{v}$ vs individual $v\&\overline{v}$

Destructive phenomenon between $\sqrt{8 \ v}$

Theoretical understanding in terms of oscillation probabilities is under study.

Sensitivity of HK: (3) Spectrum analysis in the presence of NSI

Relatively good sensitivity to NSI for $|\epsilon_{ee}|$ <2

4. Conclusions

- •Under the assumptions $\varepsilon_{e\mu} = \varepsilon_{\mu\mu} = \varepsilon_{\mu\tau} = 0$ & $\varepsilon_{\tau\tau} = |\varepsilon_{e\tau}|^2/(1+\varepsilon_{ee})$, we studied sensitivity to NSI in propagation of v_{atm} at SK & HK
- The constraint $|\tan\beta| := |\mathcal{E}_{\rm e\tau}/(1+\mathcal{E}_{\rm ee})| < 0.7$ from SK $v_{\rm atm}$ for 4438 days was improved the previous result $|\tan\beta| < 1.5$ obtained by Friedland-Lunardini in 2005.
- The analysis of SK was performed with energy rate only. This may be the reason why the allowed region is large due to the destructive phenomenon.

- Future observations of v_{atm} at HK are expected to improve the constraint: $|tan\beta| < 0.2$.
- The information of the energy spectrum is important to reduce the allowed region.
- The individual information of $v \& \overline{v}$ is important to reduce the allowed region of ε_{ee} (but not $\varepsilon_{e\tau}$). \rightarrow Further efforts to separate $v \& \overline{v}$ should be made.
- In the presence of NSI, HK has Relatively good sensitivity to NSI for $|\epsilon_{ee}|$ < 2.

Backup slides

Constraints on NSI from high energy behavior of v_{atm} data

Oki-Yasuda PRD82 ('10) 073009

Standard case with $N_v=2$

$$1 - P(\nu_{\mu} \to \nu_{\mu}) = \sin^2 2\theta_{
m atm} \sin^2 \left(\frac{\Delta m_{
m atm}^2 L}{4E} \right) \propto \frac{1}{E^2}$$

• Standard case with $N_v=3$

$$1 - P(\nu_{\mu} \to \nu_{\mu}) \sim \left(\frac{\Delta m_{31}^2}{2AE}\right)^2 \left[\sin^2 2\theta_{23} \left(\frac{c_{13}^2 AL}{2}\right)^2 + s_{23}^2 \sin^2 2\theta_{13} \sin^2 \left(\frac{AL}{2}\right)\right] \propto \frac{1}{E^2}$$

• Deviation of 1-P($\nu_{\mu} \rightarrow \nu_{\mu}$) due to NSI contradicts with data

$$1 - P(\nu_{\mu} \to \nu_{\mu}) \simeq \mathbf{c_0} + \frac{\mathbf{c_1}}{E} + \frac{c_{20}L^2 + c_{21}\sin^2(c_{22}L)}{E^2}$$

High energy v_{atm} data is well described by standard scheme → constraints on NSI: $|c_0| \ll 1, |c_1| \ll 1$

with NSI
$$1 - P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq \mathbf{C_0} + \frac{\mathbf{C_1}}{E} + \frac{c_{20}L^2 + c_{21}\sin^2(c_{22}L)}{E^2}$$

$$|\mathbf{c_0}| \ll 1 \rightarrow |\epsilon_{e\mu}| <<1, |\epsilon_{\mu\mu}| <<1, |\epsilon_{\mu\tau}| <<1$$

ε_{μτ} <1: Already shown by Fornengo et al. PRD65, 013010, '02; Gonzalez-Garcia&Maltoni, PRD70, 033010, '04; Mitsuka@nufact08

 $\epsilon_{\mu\mu}$ <1: Already shown from other expts. by Davidson et al. JHEP 0303:011, '03

 ϵ_{eu} <1: New observation (analytical consideration only)

$$|\mathbf{c_1}| \ll 1 \rightarrow \left| \mathcal{E}_{\tau\tau} - \frac{\left| \mathcal{E}_{e\tau} \right|^2}{1 + \mathcal{E}_{ee}} \right| << 1$$

Already shown by Friedland-Lunardini, PRD72:053009,'05