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Problem #1

Particle physics is Random -
You are measuring some number of events.
'Theory' prediction is 6.7
What can you say about the actual number you will 
observe?
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Problem #1

Particle physics is Random -
You are measuring some number of events.
'Theory' prediction is 6.7
What can you say about the actual number you will 
observe?

P n ;=e− n

n!
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Problem #2

You are measuring some number of events.
You observe 8
What can you say about the actual number?

This is inference, not prediction

P n ;=e− n

n!
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What is Probability?

A is some possible event.   What is P(A)?
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What is Probability?
A is some possible event.  What is P(A)?

Frequentist:  Limit N→∞  N(A) / N

Mathematical: Some number between 0 and 1 obeying 
certain rules.

Classical:     An intrinsic property or strength of A 

Bayesian:  My degree of belief in A All 4 answers are true
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Classical 
(Laplace and others) 

Symmetry factor
 Coin – ½
 Cards – 1/52 

 Dice – 1/6

 Roulette – 1/32

Equally likely outcomes   

Extend to more complicated systems of several coins, many cards, etc.

Does not (easily) extend to continuous choices, and other situations.

The probability of an event is the ratio 
of the number of cases favourable to 
it, to the number of all cases possible 
when nothing leads us to expect that 
any one of these cases should occur 
more than any other, which renders 

them, for us, equally possible. 
Théorie analytique des probabilités

http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_des_probabilit%C3%A9s&action=edit
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_des_probabilit%C3%A9s&action=edit
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_des_probabilit%C3%A9s&action=edit
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_des_probabilit%C3%A9s&action=edit
http://en.wikipedia.org/w/index.php?title=Th%C3%A9orie_analytique_des_probabilit%C3%A9s&action=edit
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Frequentist Probability 
(von Mises, Fisher)  

Limit of frequency
P(A)= Limit N→∞ N(A)/N

 
This was a property of the classical definition, now 

promoted to become a definition itself 
 
P(A) depends not just on A but on the ensemble – 

which must be specified.  
 

  Ensemble of Everything
A
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A property: There can be 
several Ensembles

• Probabilities belong to the event and the ensemble
• Insurance company data shows P(death) for 40 year old 

male clients = 1.4% (Classic example due to von Mises)
• Does this mean a particular 40 year old German has a 

98.6% chance of reaching his 41st Birthday?
• No.  He belongs to many ensembles

– German insured males
– German males
– Insured nonsmoking vegetarians
– Overweight alcohol-consuming physicists
– …

Each of these gives a different number. All equally valid.
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Limitation: There may be no 
ensemble

Some events are unique. Consider
“It will probably rain tomorrow.”

or even
“There is a 70% probability of rain tomorrow”

There is only one tomorrow (Saturday). There is NO 
ensemble. P(rain) is either 0/1 =0 or 1/1 = 1

Strict frequentists cannot say 'It will probably rain 
tomorrow'.  

This presents severe social problems.
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Circumventing the limitation

A frequentist can say:
“The statement ‘It will rain tomorrow’ has a 70% 

probability of being true.”
by assembling an ensemble of statements and 

ascertaining that at least 70% are true.
(E.g. Weather forecasts with a verified track 

record)    
Say “It will rain tomorrow” with 70% confidence
For unique events, confidence level statements 

replace probability statements.
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What is a Confidence Level?
Not just “the probability that the result is 

true”
52 LFV violating tau decays
52 confidence limits at 90%
Anyone believe  ~5 of these limits are 

exceeded?
That 'at least' can be important...
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Gaussian Measurement and 
Frequentist probability

MT=174±3 GeV :What does it mean?
For true value µ  the probability (density) for a result x is (for 

the usual Gaussian measurement)
P(x ; µ, σ)=(1/ σ√2π) exp-[(x -µ)2/2σ2]

For a given µ, the probability that x lies within ±σ is 68%. 
 P(x; µ, σ) cannot be used as a probability for µ.
 

 MT=174±3 GeV
Is there a 68% probability that MT lies between 171 and 177 GeV?
No. MT is unique. It is either in the range or outside.  
But µ ± 3 does bracket x 68% of the time: The statement ‘MT lies 

between 171 and 177 GeV’ has a 68% probability of being true.
MT lies between 171 and 177 GeV with 68% confidence
 

MT
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Choices, choices!

You can choose
• The Confidence 

Level
• Whether to quote 

an upper limit or 
a lower limit or a 
2-sided limit

• What sort of 2 
sided limit 
(central, 
shortest,...)
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Beyond the Simple Gaussian:
Confidence Belt

x

µ

Example: proportional 
Gaussian  σ= 0.1 µ

(Measures with 10% accuracy)

Result (say) 100.0

µLO=90.91       µHI= 111.1

Constructed horizontally 
such that the probability of a 
result lying inside the belt is  
68%(or whatever)

Read vertically using the 
measurement

XWhatever the value of the ordinate (true value),the probability of the result 
falling in the belt is 68%

Given a result (abscissa) we say with 68% confidence that it falls in the belt 

x
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Next complication:
Discrete observations

Poisson Formula
P n ;=e− n

n!n p(N)
0 33.3%
1 36.6%
2 20.1%
3  7.4%
4  2.0%
5  0.5%
6              0.1%
..... ...

µ=1.1

To make a 95% upper limit:
n=0,1,2   with probability 90.0%
n=0,1,2,3 with probability 97.4%

Play safe: include 3
 

 Upper Limit  µHI : n is small. µ can’t be very large. If the true 
value is µHI (or higher) then the chance of a result this small 
(or smaller) is only (1-CL)   (or less)
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Poisson table

90% limits
n lo hi
0 - 2.30
1 .1053.89
2 .5325.32
3 1.106.68
4 1.747.99
5 2.439.27

.....

95% limits
n lo hi
0 - 3.00
1 .051 4.74
2 .355 6.30
3 0.818 7.75
4 1.37 9.15
5 1.97 10.51

....

Found by solving For high limit0
n P ( n , )=

For low limit0
n−1 P ( n , )=1−
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How often will your limit statements be 
true?

Should be same as CL, surely?
Yes. Unless you fall foul of the 'more 

than' stuff
Coverage is a function of µ  (etc)
A (frequentist) test may “overcover” - 

coverage greater than CL
It should never undercover (by 

construction)

100

90

µ

C

Technical point: Coverage
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Confidence and significance
For historical reasons  CL = 1-α

α is the Significance. Language of Hypothesis Testing:
Suppose the pdf really has this form.  Then the probability that it would 

give a measurement this far (or further!) from the true one is α.
'Improvement among patients taking the treatment was significant at the 

5% level' means that if the treatment does nothing, the probability of 
getting an effect this large (or larger) is 5% (or less).

Given a measurement, the corresponding probability is called the p-
value. The null hypothesis is rejected if the p-value is smaller than the 

significance
Significance and p value have the same formula – but one is constructed 

before the data are seen, the second afterwards
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Goodness of Fit

An instance of 'Hypothesis testing'. 
Hypothesis being tested is that the theory describes the 

data.

Some measure of agreement is constructed, often χ2   

p-value of (say) 2.3% => If the theory truly does 
describe the data the probability of an agreement this 
bad (or worse) is only 2.3% 
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The χ2 distribution and what it 
can do

Form sum of N results

Distribution: integrated multidimensional Gaussian.  
Depends on N, and has mean N (but χ2/N not too useful)

Tables/functions exist for 'χ2 probability'
 i.e. p-value for this χ2 

 i.e. Integral from χ2 to infinity
i.e. probability of getting this bad an agreement by chance. 

2=
yi− f x i

 i

2

= y− f V−1 y− f 
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N sigma results

P-values (from χ2 and elsewhere) are often 
converted into Gaussian discrepancies:

2.7 10-3 3 σ   'Evidence for'
5.7 10-7 5 σ   'Discovery of'

Question: Why don't particle physicists 
accept  99.73% probability as good 
enough?
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N sigma results

Question: Why don't particle physicists 
accept  99.73% probability as good 
enough?'

Answer: Past experience!
   Pentaquarks, Y(5.97), Top discovery at 

UA1...
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Techniques for getting  False 
Discoveries

1. Creativity.(“Michaelangelo 
Method”) Now controlled by the 
Blind Analysis technique

2. Reflections. Particle mis-ID or 
the effect of some kinematic or 
detector constraint. 

3. Sheer hard work. Plot 
everything you can think of.

4. “Look Elsewhere effect.”  Applying statistical tools 
appropriate to a simple hypothesis to a range of 
hypotheses. 
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P.R.L. 36: 1236–1239 revisited

27 high mass events between 5.5 and 10 
GeV. 

11 events between 5.8 and 6.1
'less than one chance in fifty
that this is a coincidence'
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Is there a peak?
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Is there a peak?
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Is there a peak?
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Goodness of fit

Test the Standard Model...
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Chi squared: another nice thing

If you adjust parameters to fit the theory to 
the data, that improves χ2 by (on average) 
1.0 per parameter.

The improved distribution and the difference 
both have χ2 distributions with appropriate N

This does not always apply – specifically if 
the improved model contains parameters 
which are meaningless under the old 
model.
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Watch out!

Basic model – flat  f(x)=0.5
Straight line   
• f(x)=m x + c      OK
flat + bump    
• f(x)=c + n exp(-(x-.3)2/.02)    -  OK
flat+bump
• f(x)=c + n exp(-(x-m)2/.02)   - No.  If n=0 then 

m is meaningless
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Davies Biometrika papers
Last example is obvious when you think 

about a narrow peak.
Fixed-position peak enables you to eliminate 

the discrepancy at that peak.  Reduce χ2 by 
~ 1

Variable-position peak enables you to 
eliminate your worst contribution to χ2 . 
Reduction large and complicated to 
calculate.

Recommended remedy: Toy Monte Carlo. 
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Problem for Frequentists:
Add a background    µ=S+b

b known*, µ measured through observing n events, S wanted 
1. Find range for µ
2. Subtract b to get range for S
Examples:  
See 5 events, background 1.2

95% Upper limit: 10.5 → 9.3 �
See 5 events, background 5.1

95% Upper limit: 10.5 → 5.4  ? 
See 5 events, background 10.6

95% Upper limit: 10.5 → -0.1 �
This is technically correct. We are allowed to be wrong 5% of the 

time. But stupid.   We know that the background happens to 
have a downward fluctuation but have no way of 
incorporating that knowledge

*We assume that the background is calculated correctly
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Constrained parameters: 2 sad 
but true(ish) stories

  Measure a mass
MX

2=-2 ± 5 GeV

Or even 
MX

2=-5± 2 GeV

“Mx
2 lies between -7 

and -3” with 68% 
confidence

?!
 

 Counting Experiment
Expect 2.8 background 
events.  See 0 
Signal+background<2.3, 
so signal< -0.5 (at 90% 
CL)

?!
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Similar problems
Expected number of events must be non-negative
Mass of an object must be non-negative
Mass-squared of an object must be non-negative
Higgs mass from EW fits must be bigger than LEP2 limit 
of 114 GeV
3 Solutions 
Publish a ‘clearly crazy’ result
Use Feldman-Cousins or CLS

Switch to Bayesian analysis
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Feldman Cousins Method
Works by attacking what looks like a different problem...

Example:

You have a background of 
3.2

Observe 5 events?  Quote 
one-sided upper limit 
(9.27-3.2 =6.07@90%)

Observe 25 events? Quote 
two-sided limits  

Physicists are human
Ideal Physicist
1. Choose Strategy
2. Examine data
3. Quote result

Real Physicist
1. Examine data
2. Choose Strategy
3. Quote Result

Also called* ‘the Unified Approach’

* by Feldman and Cousins, mostly
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Feldman Cousins:  µ=s+b
b is known. n is measured. s is what we're after

1 sided 
90%

2 sided 
90%

Flip-flop 
point

This is called 'flip-flopping 
and is BAD because it 
wrecks the whole idea of 
the Neyman confidence belt 
construction
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Feldman Cousins: Ranking

First idea (almost right)
Sum/integrate over range of (s+b) values with highest 

probabilities for this observed n.
(advantage that this is the shortest interval)

Glitch: Suppose n small.  (low fluctuation)
P(n;s+b) will be small for any s and never get counted
Instead:  compare to 'best' probability for this n, at s=n-

b or s=0 and rank on that number
Such a plot does an automatic ‘flip-flop’
n~b    single sided limit  (upper bound) for s
n>>b   2 sided limits for s 
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How it works
Belt has to be computed for the appropriate value 

of background b. (Sounds complicated, but 
there is lots of software around)

As n increases, flips from 1-sided to 2-sided limits 
– but in such a way that the probability of being 
in the belt is preserved

s

n

Means that 
sensible 1-sided 
limits are quoted 
instead of 
nonsensical 2-
sided limits!
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Arguments against using 
Feldman Cousins 

 Argument 1
It takes control out of hands of physicist. You might want to 

quote a 2 sided limit for an expected process, an upper 
limit for something weird

 Counter argument: 
This is the virtue of the method. This control invalidates the 

conventional technique.  In rare cases it is permissible to 
say  “We set a 2 sided limit, but we're not claiming a signal”
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Feldman Cousins: Argument 2
 Argument 2
If zero events are observed by two experiments, the one with the 

higher background b will quote the lower limit. This is unfair to 
hardworking physicists

 Counterargument
An experiment with higher background has to be ‘lucky’ to get zero 

events.  Luckier experiments will always quote better limits.  
Averaging over luck, lower values of b get lower limits to report.

Example: you reward a good student with a lottery 
ticket which has a 10% chance of winning $100.  
A moderate student gets a ticket with a 1% 
chance of winning $200.  They both win.  Were 
you unfair?
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 The CLS Technique

Used for Higgs searches by 
the combined LEP 
experiments.

'Frequentist-motivated'
 
  

Different experiments 
selected events with Higgs 
hints
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 CLs
 
Generalisation of Helene formula
Define some quantity Q. Could be number of 

events, or some more clever Higgsishness 
number. Larger values of Q imply a signal.

 Standard frequentist CL numbers
 CLb=P(Q or less|b)

 CLs+b=P(Q or less|s+b)

Then take ratio – or difference of logs
CLs=CLs+b/CLb

Used as confidence level (overcover). 
Optimise strategy using it and quote results

Yellow is 1-CLb

Green is CLs+b for 
given mH

“One will be hard pressed 
to find a more robust 
frequentist-motivated 
presentation of results at 
the search frontier”
Alex Read: 
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Results
(as of 2002)

Rule out MH up to 
114.1 GeV

(>114.1 GeV @ 
95%)
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Summary on CLs

Used for several searches at LEP and 
elsewhere

Adaptive and sensible.
Frequentist but 'behaves like P(theory|Data)'
Well adapted to exclusion.

See Alex Read's talks at CERN and Durham 
workshops
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Bayesian (Subjective) Probability  

I can say:“The probability of rain tomorrow is 70%”
And I  mean:
I regard  'rain tomorrow' and 'drawing a white ball 

from an urn containing 7 white balls and 3 black 
balls' as equally likely.

By which I mean:
If I were offered a choice of betting on one or the other, I 

would be indifferent. 
P(A) is a number describing my degree of belief in A
1=certain belief. 0=total disbelief
• A can be anything: rain,  horses, existence of SUSY
• Is my P(A) is the same as your P(A). Subjective = 

unscientific?
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Subjectivity check

What probability do you assign to the 
following:

• The Higgs will be seen at the LHC
• Obama will be re-elected
• SUSY will be seen at the LHC
• It will rain tomorrow
• The Standard Model is correct
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General (uncontroversial) form
P(A|B)P(B) = P(A & B) = P(B|A) P(A )

P(A|B)=P(B|A) P(A)
      P(B)

P(B) can be  written P(B|A) P(A) + P(B|not A) (1-P(A))
Examples:
People  P(Artist|Beard)=P(Beard|Artist) P(Artist)
                                          P(Beard)

 
π /K Cherenkov counter   P(π|signal)=P(signal| π) P(π)

                P(signal)

Medical diagnosis   P(disease|symptom)=P(symptom|disease) P(disease)
                                   P(symptom)

Bayes’ Theorem

0.9*0.5/(.9*.5+.01*.5)= 0.989
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Misinformation abounds...

http://yudkowsky.net/bayes/bayes.html
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Bayes at work: modifying 
beliefs

Dr. A Sceptic thinks that Global Warming is 
probably a myth.   P=10%

Data arrives showing loss of Antarctic ice 
coverage.    Global warming said this would 
definitely happen (P=1).  But it could 
happen as part of natural cyclical 
fluctuations (P=20%)

Use Bayes Theorem
PG '=

P melt |GPG

P melt |GPGP melt | G PG
= 0.1
0.10.2x0.9

=0.36

All numbers 
totally fictitious
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Priors and Posteriors

Can regard the function P(M) as a probability 
distribution a model parameter M 
confronting some result R

P M  '= P R |M P M 
P R Prior distribution 

for MPosterior distribution 
for M

2.302.30

Probability 
distribution for R 
given M  distribution for R 

anyway
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Measurements:Bayes at work
 Result value x       Theoretical ‘true’ value µ     P(µ|x) ∝ P(x|µ) P(µ)

Prior is generally taken as uniform
Ignore normalisation problems

Construct theory of measurements – prior of second measurement is 
posterior of the first

 P(x|µ)  is often Gaussian, but can be anything (Poisson, etc) 
For Gaussian measurement and uniform prior, get Gaussian posterior
 

= X
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Bayesian Confidence Intervals

Trivial!
• Given the posterior P'(M|R) you 

choose a range [Mlo,Mhi] for which

Choice of strategies: central, upper 
limit lower limit, etc.

 

∫M lo

M hi P ' M |RdM=CL
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Pause for breath

For Gaussian measurements of quantities with no 
constraints/objective prior knowledge the same 
results are given by:

 Frequentist confidence intervals
 Bayesian posteriors from uniform priors
A frequentist and a Bayesian will report the same 

outcome from the same raw data, except one will 
say ‘confidence’ and the other ‘probability’. They 
mean something different but will never realise this.
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Bayesian:  Proportional 
Gaussian 

Likelihood function
C exp(- ½(µ-100)2/(0.1 µ)2)
Integration gives C=0.03888
68% (central) limits
92.6 and 113.8 

Frequentist and Bayesian approaches give different answers

16%

68%

16%
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Bayesian limits from small number 
counts

P(r,µ)=exp(- µ) µ r/r!
With uniform prior this gives  posterior 

for µ
Shown for various small r results
Read off intervals...

r=6
r=2

r=1

r=0 P(µ)

µupper limit from n events
∫0

µHI exp(- µ) µn/n!  dµ = CL

Repeated integration by parts:
Σ0

n exp(- µHI) µHI
n/n!  = 1-CL

Same as frequentist limit  
 This is a coincidence! Lower Limit 

formula is not the same
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µ=S+b for Bayesians
No problem!
Prior for µ is uniform for S≥b
Multiply and normalise as before

      Posterior            Likelihood                 Prior
Read off Confidence Levels by integrating posterior

= X
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Incorporating Constraints: 
Poisson

Work with total source strength (s+b) you 
know is not less than the background b

Need to solve

Formula not as obvious as it looks.
Known as “the old PDG formula” or “Helene’s 

formula” or “that heap of crap” 

=
∑0

n
e− sbsbr / r !

∑0

n
e−b br / r !
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Problem: the Uniform Prior
General usage: choose P(a) uniform in a

(principle of insufficient reason – actually usually 
laziness)

Often ‘improper’:  ∫P(a)da =∞. Though posterior 
P(a|x) comes out sensible

BUT!
If P(a) uniform, P(a2) , P(ln a) , P(√a).. are not
Insufficient reason not valid (unless a is ‘most 

fundamental’ – whatever that means)
Statisticians handle this: check results for 

‘robustness’ under different priors
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Result depends on Prior

Example: 90% CL Limit from 0 events
Prior flat in µ

Prior flat in √µ

X

X =

=
1.65

2.30
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Robustness

• Result depends on chosen prior
• More data reduces this dependence 
• Statistical good practice: try several priors 

and look at the variation in the result
• If this variation is small, result is robust 

under changes of prior and is believable
• If this variation is large, it's telling you the 

result is meaningless
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Fisher Information
An informative experiment 

is one for which a 
measurement of x will give 
precise information about 
the parameter a.

Quantify: I(a)= -<∂2 ln L/∂a2> 
 

 (Second derivative – 
curvature)

P(x,a): everything

P(x)|a is the pdf

P(a)|x is the 
likelihood L(a)
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Jeffreys’ Prior
A prior may be uniform in a – 

but if I(a) depends on a it’s 
still not ‘flat’: special values of 
a  give better measurements

 
 
 Transform a  → a’ such that I(a’) is 

constant. Then choose a uniform prior
• location parameter,  uniform prior OK
• scale parameter – a’ is ln a.  prior 1/a
• Poisson mean – prior 1/√a
 



Why didn't it catch on?

It is 'objective' in the sense that everyone can agree on 
it.  But they don't.

•It's more work than a uniform prior
•There are cases where it diverges and gives posterior 
functions that can't be normalised
•It does not work in more than one dimension (valiant 
attempts are being made to do this generalisation, 
under the name of Reference Priors)
•It depends on the form of L(R,M) which depends on 
the experiment.   If you have an initial degree-of-belief 
prior function for (say) the Higgs mass, that should not 
depend on the measurement technique 
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Frequentist versus Bayesian?

Two sorts of probability – totally different. 

Rivals? Religious differences? 

Particle Physicists tend to be frequentists. Cosmologists 
tend to be Bayesians

No. Two different tools for practitioners
Important to be aware of the limits and pitfalls of both
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Frequentist versus Bayesian?
Statisticians do a lot of work with  Bayesian 

statistics and there are a lot of useful ideas. But 
they are careful about checking for robustness 
under choice of prior.

Beware snake-oil merchants in the physics 
community who will sell you Bayesian statistics 
(new – cool – easy – intuitive) and don’t bother 
about robustness.

Use Frequentist methods when you can and 
Bayesian when you can’t (and check for 
robustness.)   But ALWAYS be aware which you 
are using. 
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Bayesian pitfall (1):
 Unitarity triangle

Measure CKM angle α by measuring B →ρρ decays 
(charged and neutral, branching ratios and CP 
asymmetries). 6 quantities.

Many different parametrisations suggested
Uniform priors in different parametrisations give 

different results from each other and from a 
Frequentist analysis (according to CKMfitter: 
disputed by UTfit)

For a complex number z=x+iy=rei θ  a flat prior in x and 
y is not the same as a  flat prior in r and θ
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 Results
Bayesian
Parametrise Tree and Penguin 
amplitudes 

( )
( )
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i ii
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A e T T e
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δα

δα

δ δα

+ − −

+ −

−

= − +

= − +

= − +

Bayesian
3 Amplitudes:
  3 real parts, 3 Imaginary parts
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Interpretation

Removing all experimental 
info gives similar P(α)
The curse of high 
dimensions is at work

Uniformity in x,y,z makes
  P(r) peak at large r
This result is not robust 

under changes of prior
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Example – Efficiencies
CDF statistics group (Joel Heinrich)  looking at problem of 

estimating signal cross section S in presence of 
background and efficiency.

N= εS+b
Efficiency and Background from separate calibration 

experiments (sidebands or MC). 
Everything done using Bayesian methods with uniform 

priors and Poisson statistics formula. Calibration 
experiments use uniform prior for ε and for b, yielding 
posteriors used for S

P(N|S)=(1/N!)∫∫e-(εS+b) (εS+b )N P(ε) P(b) dε db 
Check coverage – all fine
Partition into classes (e.g. different run periods)
Coverage falls! 
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The curse strikes again
Uniform prior in ε: fine
Uniform prior in ε1, ε2… εr

→εr-1 prior in total ε
Prejudice in favour of high 

efficiency
Signal size downgraded 
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Happy endingHappy ending
Effect avoided by using Jeffreys’ Priors  instead of uniform 

priors for ε and b
Not uniform but like 1/ε, 1/b

 
Uniform prior in S is not a problem – but maybe should 

consider 1/√S?
Coverage (a very frequentist concept) is a useful tool for 

Bayesians



HCPSS Statistics 
Lectures 2010

Roger Barlow
 

Lecture 1
Slide 73

Summary

Probability
– Frequentist

• Confidence Levels
• Small numbers (0 →  <3 @ 95% CL)
• Significance and p-values
• Goodness of fit and χ2

• Problems with constraints
– Bayesian

• Usage
• Ambiguity of 'uniform prior'
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Conclusions
Bayesian Statistics are
• Illuminating
• Occasionally the only tool to use
• Use with care: Results depend on choice of prior/choice of variable. 

Always check for robustness by trying a few different priors. Real 
statisticians do

If you’re integrating the likelihood you are a Bayesian. I hope you know 
what you’re doing.

Be suspicious of anything you don’t understand
But always know what you are doing and say what you are doing. 
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Further reading
• The Particle Data Book
• Textbooks by Glen Cowan, Louis Lyons, Bohm and 

Zech, R.B. 
• “Recommended Statistical Procedures for BaBar” 

BAD 318
• PHYSTAT proceedings (all Ed. Louis Lyons):

– CERN 2000-05
– Durham 2002 IPPP  02/39
– SLAC 2003  SLAC-R-703
– Oxford 2005 “Statistical problems in Particle 

Physics”, Imperial College Press (2006)


