

# The E906/SeaQuest Experiment: Present and Future

Kun Liu Los Alamos National Laboratory

46th Annual Fermilab Users Meeting, June 12-13, 2013

## E906/SeaQuest experiment at Fermilab





### Probe sea quarks via Drell-Yan process

#### The Drell-Yan process:



$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}x_{\mathrm{b}} \, \mathrm{d}x_{\mathrm{t}}} = \frac{4\pi\alpha^2}{9x_{\mathrm{b}} \, x_{\mathrm{t}}} \frac{1}{s} \sum_{q} e_q^2 \left[ \bar{q}_{\mathrm{t}}(x_{\mathrm{t}}) q_{\mathrm{b}}(x_{\mathrm{b}}) + \bar{q}_{\mathrm{t}}(x_{\mathrm{b}}) \bar{q}_{\mathrm{b}}(x_{\mathrm{b}}) \right]$$
small

 $\overline{q}_t(x_t)$ : target sea quark at low/intermediate x  $q_b(x_b)$ : beam valence quark at high x







## Flavor asymmetry in light quark sea



 Assuming charge symmetry, ignoring nuclear effects of deuterium and heavy quark contributions:

$$\left. \frac{\sigma^{pd \to \mu^+ \mu^-}}{\sigma^{pp \to \mu^+ \mu^-}} \right|_{x_{\mathrm{b} \gg x_{\mathrm{t}}}} pprox \frac{1}{2} \left[ 1 + \frac{\bar{d}(x_{\mathrm{t}})}{\bar{u}(x_{\mathrm{t}})} \right]$$

• Naively we would expect flavor symmetry between  $\overline{u}$  and  $\overline{d}$ 

• E866/NuSea experiment reveals a striking asymmetry in the sea distributions at

moderate x

Caused by virtual pions?







### Measurement of $\overline{d}/\overline{u}$ at E906/SeaQuest



- E906 is based on I20 GeV proton beam from Main Injector compared with 800 GeV beam of E866 — much lower √s
- Drell-Yan cross section scales as 1/s
- J/ψ cross section scales as s



#### 50x improvement of precision

• Common *x* coverage with E866 and E772, and extend to higher region



## The EMC effect in DY process



- E772 data shows no anti-shadowing in DY process, with limited statistics above 0.2: is anti-shadowing a valence effect?
- Large theoretical discrepancy at high x. E906 will be able to provide enough sensitivity to differentiate between these models.

- First discovered by European Muon Collaboration in DIS process
- Suggesting that quark structure of unbound nucleon vs. nuclei is significantly different
- Nuclear effects in sea quark distributions may be completely different





## Partonic energy loss in Drell-Yan process

- A fundamental probe for matter properties
- Very model-dependent in high energy heavy ion collisions
- Drell-Yan process provides a clean baseline calibration since there is only minimal final state interactions







- Gavin and Milana:  $\Delta x_1 = -\kappa_1 x_1 A^{\frac{1}{3}}$
- Brodsky and Hoyer:  $\Delta x_1 = -\frac{\kappa_2}{\epsilon} A^{\frac{1}{3}}$
- Baier et al:  $\Delta x_1 = -\frac{\kappa_3}{s} A^{\frac{2}{3}}$

Early data from E866 at 800 GeV:

- DY cross section suppression ~ 20% with p+W
- $x_{\text{target}} < 0.02 \text{ at } 800 \text{ GeV p+A}$
- <dE/dx> effect strongly depend on shadowing correction





## First unambiguous determination at E906





- The energy loss effect greatly amplified since it scales with I/s
- Kinematic range well above shadowing region
- With radiation length  $\sim 1 \times 10^{-13}$  cm, E906 will achieve sensitivity of  $\sim 20\%$
- Clearly distinguish between the leading models of L-dependence of E-loss ( $5\sigma$  effect)

$$>$$
 -dE  $\propto$  A<sup>1/3</sup> (or  $\propto$  L)

$$>$$
 -dE  $\propto A^{2/3}$  (or  $\propto L^2$ )





First unambiguous determination of quark energy loss in cold nuclear matter



#### Run-I status of E906/SeaQuest

#### Commissioning Run 2012

- Brief 2-month run after many interesting diversions
- all systems worked
- Large intensity variations within spill
  - Caused entire detector to turn "on"
  - More prominent in data with dimuon trigger than single muon trigger
- DAQ TDC firmware not quite ready
  - Lacked hardware zero suppression (zero suppression in front-end CPU)
  - Large dead times, especially with large events
- PMTs at St. 1 need better rate capabilities
- Interim S t. 1 and 3- Tracking





A new two-year run will start in the mid August!



### Future prospects of E906/SeaQuest

Fast Polarimeter

- Polarized beam in Main Injector & use SeaQuest Spectrometer
  - Measure Sivers asymmetry



- Sivers function
  - Captures non-perturbative spin-orbit coupling effects inside a polarized proton
  - > Is time-reversal odd:
    - Leads to sign change:
    - Fundamental prediction of QCD



LANL polarized proton (NH<sub>3</sub>) target



Beamline CNI Polarimeter

- First measurement of p-p Drell Yan with a polarized target
- Measure Single Spin Asymmetry for sea quarks
- Access quark angular momentum through Sivers Distribution
- Help solve the nucleon spin puzzle
- Establish sign of Sivers distribution, if nonzero



#### Polarized Drell-Yan at Fermilab Main Injector — E1027

- Extraordinary opportunity at Fermilab
  - > Set up best polarized DY experiment to measure sign change in Sivers function
    - Major milestone in hadronic physics (HPI3)
    - High luminosity, large x-coverage
    - Spectrometer already setup and running

- > Experimental sensitivity:
  - 2 yrs at 50% eff,  $P_b = 70\%$
  - Luminosity:  $L_{av} = 2 \times 10^{35}$  cm<sup>-2</sup>s<sup>-1</sup>



- > With minimal impact on neutrino program
  - Run alongside neutrino program (10% of beam needed)



#### Projected precision with a polarized target at SeaQuest



Statistics shown for one calendar year of running:  $\mathcal{L} = 1.4 \times 10^{43} \text{ cm}^{-2} \iff \text{POT} = 2.1 \times 10^{18}$ 

$$A_N^{DY} \propto \frac{u(x_b) \cdot f_{1T}^{\perp, \bar{u}}(x_t)}{u(x_b) \cdot \bar{u}(x_t)}$$

Existing data do not put enough constraints on the sea quark Sivers distribution, neither sign nor value.

#### If $A_N \neq 0$ , major discovery:

- "Smoking gun" evidence for  $L_{ubar} \neq 0$
- Determine sign and value for ubar Sivers distribution
- Confirm Lattice QCD and Meson Cloud Model expectations
- Help shape physics direction at EIC

If 
$$A_N = 0$$
:

- L<sub>ubar</sub> = 0, spin puzzle more dramatic ?
- Sea flavor asymmetry hard to explain
- In contradiction to Lattice QCD and Meson Cloud Model expectations



### Summary

- E906/SeaQuest experiment as a unique sea quark laboratory,
   will be able to answer the following fundamental questions:
  - $\rightarrow$  What is  $d/\bar{u}$ ? And where do they originate?
  - What's the scale of nuclear effects on sea quarks at high-x regon? Is antishadowing a valence effect?
  - > How does colored parton loss energy in cold nuclear matter?
- E906 has finished a successful commissioning Run-I, and is looking forward to the upcoming 2-yr Run-II
- With future upgrades of polarized beam/target, E906 will be equipped to measure:
  - > Sivers asymmetry of the valence/sea quarks in a polarized proton





## Thank you!