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Why Extra Dimensions (XD)?

e The idea that there are more than 3+1 dimensions has a long history...

...which | will not try to review... Sorry!

e Recent years have seen an outburst of activity in this field.

In a sense, the driving force has been experimental, namely the real possibility to test
these ideas at colliders (or even through cosmological observations, DM searches, etc.)

e XD should be considered a framework (even a set of frameworks), which can be
realized through many, many models...

Much as Quantum Field Theory relates to the Standard Model (SM)

Hopefully, experimental data will tell us if/which XD are realized in nature




Why Extra Dimensions (XD)?

e The idea that there are more than 3+1 dimensions has a long history...
...which I will not try to review... Sorry!

e Recent years have seen an outburst of activity in this field.

In a sense, the driving force has been experimental, namely the real possibility to test
these ideas at colliders (or even through cosmological observations, DM searches, etc.)

e XD should be considered a framework (even a set of frameworks), which can be
realized through many, many models...

Much as Quantum Field Theory relates to the Standard Model (SM)

Hopefully, experimental data will tell us if/which XD are realized in nature

e To proceed, | will simply assume that there is interest in learning about these ideas.

Certainly, establishing experimentally the existence of XD would be revolutionary!

e | will not try to answer the question of this slide now, but rather as we go along...




Can we live in more than 4D?

e We perceive (either through our senses or experimentally) 3+1 dimensions

e Whether or not there could be more dimensions depends on how we can probe them
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e Gravitationally: deviations from Newton'’s
inverse square law tell us 2 < 160 pm

If these dimensions are cousins of the ones . e e T
we see (geometric description via GR), we _

: = di[ato;/dimens.i@ns
expect that gravity would always see them! 10 Jﬁ -
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e |f they can be probed by SM particles,
constraints much tighter: we have probed
distances of order 107 m [~ (100 GeV) ]

The SM is a 4D theory, and it works! X(meters)

We would not have seen XD much smaller than this. Can they by lurking around?




My approach in these Lectures

e Can'’t be exhaustive... will have to leave many interesting topics out

Concentrate on XD at the TEV scale

(i.e. those that can in principle be probed in an environment like the LHC)

e Start by discussing basics, highlighting properties of general applicability

e |llustrate with the physics of a couple of examples (probably a biased exposition)

e Cover some phenomenological consequences (collider, radion, dark matter...)
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PART |

e General theoretical remarks

e The Kaluza-Klein decomposition
e Boundary conditions
 Localization in the extra dimensions

e Extra Dimensions at the TeV scale: two categories (examples)

e Flat Extra Dimensions

e Warped Extra Dimensions

PART I e Dynamical breaking of the Electroweak (EW) symmetry

e The Radion
e Dark matter

e Collider Phenomenology




The Kaluza-Klein Decomposition

(or how compact dimensions are different)

e Compact dimensions involve a scale: size/volume of the extra dimension(s) — “R”

e Two equivalent descriptions are possible, and have different domains of usefulness:
1) At scales large or comparable to R

A 4D language is appropriate —— The concept of Kaluza-Klein (KK) modes

2) At scales small compared to R

e Emphasis on higher-D spacetime structure

Higher-D language better —— e Take into account effects of all KK modes at once
e E.g. useful to understand structure of divergences

* In most applications, we (would) be interested in the KK mode language

e Fasy to obtain low-energy description (it better describe physics as well as the SM does)

e Relevant description of new physics at colliders




The Kaluza-Klein Decomposition

(or how compact dimensions are different)

Quantum fields in 4+n dimensions:
b (xH, y") (u=0,1,2,3; 3" parametrize compact space)
Go to ““Fourier” space, except momentum not necessarily a good quantum number in the XD

The point is: we can expand any function in any complete set of functions {f, (y")}

B (at,y') = \/_ ACOIAY
L> ““n-th KK mode”

Life is easier if the basis is orthonormal:

<fn

normally defined in
terms of an integral

Allows to think of the gb(”)

as “independent” d.o.f.




The Kaluza-Klein Decomposition

(or how compact dimensions are different)

How do we choose a convenient basis? — Depends on the model in question
In general: " perturbation theory philosophy”

e Understand free part of the theory, add interactions later...

e Free (quadratic) part defines a differential operator, e.g.

/d%dny % (ONPON D — M?®%) = — /d%d’”’y %@(D + M?*)®

e Use the eigenfunctions of the XD part of the free differential operator

linear PDE (this we can solve)

/I: 2 e 2 . . o _ o
(810 3 1 ) fn =My fn impose appropriate boundary conditions
(should regard as part of the definition of the theory)

Mathematical upshot: define a "“self-adjoint” problem — orthonormality, completeness




The Kaluza-Klein Decomposition

(or how compact dimensions are different)

Now replace @ (z", 3= % Z (™) (") fn(y*) back in the Lagrangian:

1 |
— /d4azd”y §<I> ((%(9“ + 0;0" + MQ) o
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(or how compact dimensions are different)

Now replace @ (z",y") = qb(”> ") fn(y") back in the Lagrangian:
P grang
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The Kaluza-Klein Decomposition

(or how compact dimensions are different)

Now replace @ (z",y") = qb(”> ") fn(y") back in the Lagrangian:
P grang

1 |
— /d4azd”y §<I> ((%(9“ + 0;0" + MQ) o

1
-~ | oy >3 200 o [ 8,00 + ) (0101 + M) f

—-> (7 /d”yfnfn) [ ko 50 (8,08 + m2)o"




The Kaluza-Klein Decomposition

(or how compact dimensions are different)

Now replace ®(z*,y') = \/_ qu(”) (z")fn(y") back in the Lagrangian:

1 |
— /d4xd”y §<I> ((‘9”(9“ + 0;0" + MQ) o

£ 1 4 .. 1 n n' (n’) 2 2
= _V/d = yn;§¢< £ [fn,auaﬂqs( ) 4 6™ (8;0° + M?) £,

-3 (i [awtnt) [atag0m @08+ mt)ot

But (5’7;8i -+ MQ) = mifn , plus b.c.’s implies




The Kaluza-Klein Decomposition

(or how compact dimensions are different)

Now replace ®(z*,y') = \/_ qu(”) (") f.(y") back in the Lagrangian:
1 :
= /d4xd”y §<I> ((‘L@“ + 0;0" + MQ) o
1 4 n n n () 2
— -3 [ty >3 6 fo [ FurBu026) 4 ) (@08 + M) f

—-> (7 /d”yfnfn) [ ko 50 (8,08 + m2)o"

| 1
But (9;0" + MQ) fn =m2f, , plus b.c’s implies v /dny fnfn = Onn

Physical upshot: the theory can be rewritten as —Z / d*z %¢(n) (8,0" + m2) g™

or... a free High-D scalar is equivalent to infinite 4D scalars with masses m2 !




Boundary Conditions

It has been remarked that specifying the theory (physics) requires a choice of b.c.’s

We implicitly used this before: integrate by parts and discard surface terms (how convenient!)

(in 4D, the analogous assumption is that fields vanish sufficiently fast at “"infinity”)

The issue can be turned around to ask: given an XD dimensional space,

What are the b.c.’s that preserve the previous nice properties?

e freely integrate by parts (convenient)

e self-adjointness (completeness, orthonormality, transparent physical interpretation)

The question can be answered systematically by considering arbitrary variations of the action

Under 0® — o — 5Svolume S[E 5ssurface

Va ~ Va ~

Egs. of motion  boundary cond.




Boundary Conditions (Examples)

lllustrate with a couple of relevant examples in one and two extra dimensions:

Compactification on a circle S Compactification on the ~"Interval”

Periodic b.c’s: ®(y + 27 R) = ®(y) (XD extends from y =0 to y = 7R)

B.c.’sat y =0 and y = 7R are
Dirichlet, Neumann ...

or linear combinations
New quantum number

is simply D5 S/ 7,

If 5D field is massless:

n
KK masses m,, = —

R vk, KK parity

End points sometimes called
“Fixed points” or ~"branes”
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Torus compactification
The " Chiral Square”




Zero-Modes

The KK decomposition can lead to 0-modes, i.e. solutions with 119 = 0

e For 5D gauge fields (flat space), one finds:

g
mgy = 0

foly) =

Flat wavefunction — 4D gauge invariance

£ () +2f,(y) = —m:. fa(y)  which is solved by {

e For 5D fermion fields (flat space), one finds:

fnL anL—mnfnR m0:0
which are solved by >
i o L s — G )

These solutions may or may not be allowed by the b.c.’s

e 4D gauge symmetry can be (spontaneously) broken by b.c.’s

e Circle and Torus: allow both chiralities

e “Interval” and ~Chiral Square”: allow only one chirality




Interactions in KK Language

Having understood how to interpret a higher-D theory in 4D terms, we can consider interactions
e As long as these are perturbative, the physics can be understood in terms of KK modes

e |n the free theory only the spectrum is observable. With interactions, the wavefunctions also
become observable, since they determine the details of the interactions among KK modes, e.g.

/d4x dny )\n\IJ\IJ® e Z An17n27n3 /d4$¢(n1)w(n2)¢(n3>

ni,n2,mn3

ni
An

)\nl % n3: dn niJnz2Jns
n2, V\/V/ Y Jry S f

(%

Sometimes this integral obeys interesting selection rules, e.g. in 5D flat space on interval”:

Hence, at tree-level, no KK mode can decay into 0-modes

Rl lisiee 0 (a similar selection rule holds on the chiral square and cousins)
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Can be interpreted as
interactions localized
at the fixed points
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Compactification on flat spaces have a natural remnant of XD momentum conservation

At tree-level: all first-level KK modes are stable!

But loops induce new interactions:




KK Decompositions in Warped Spaces

For 5D theories preserving 4D Lorentz invariance:

ds® = a*(y)n,,detdz” — dy?

For scalars: :
( Eq. of motion:

a/ a// a/2
ot | fq/{JFQEfT/L— E+2?+M2] [, el )

a(y) e e

. i 1
\/f = Solution for a(y) = e *U" and bulk mass M2 = [cﬁ +cs — 15] s

(I)(x/i,y) =

\ fn(y) = Nneky [J|cs—|—1/2| (mneky/k) i bn Yv|cs—|—1/2| (mneky/k)}

For fermions: ( Egs. of motion:

CL/

f?lz,L g (Cf o 1/2) Efn,L S mna_lfn,R

a/

= ;L,R o (Cf =l Efn,R = m?la‘lfn,L

Solution for a(y) = e " and bulk mass M = ck:

\ fn(y> = Nneky [J|cf—|—1/2|(mn€ky/k) S bn§/|0f—|—1/2|(mn€ky/k)}




KK Decompositions in Warped Spaces

1
For gauge fields with a gauge fixing term 5% {n*0,A, — €0y |a(y)’ As] }2 :

( Eq. of motion:

f() + 22 fay) = —maa > fu(y)

Solution for a(y) = e ¥

fn(y) & Nneky [Jl (mneky/k) + b, Y1 (mneky/k)}

\

All wavefunctions normalized according to:

ll;/dn et These wavefunctions reflect the strength

of the interactions at each point y

Boundary conditions fix the constants b,, and the spectrum 17,,.




Using the Extra Real Estate

The low-energy physics (that of the "~ 0-modes”) can be very sensitive to the XD

We already observed that:

e 5D fermion masses control localization

e Couplings are proportional to overlap
integrals

Hence it is easy to explain exponentially
small (dimensionless) numbers from the
underlying (unseen) XD

Yukawa couplings:

LSSl e (R (] e

In such scenarios one can argue that the emergence of exponential herarchies is
the norm, thus making the observations of the SM far less " puzzling”




Using the Extra Real Estate

e Scalars can also be localized in a manner similar to fermions.

Unfortunately, the existence of a (localized) scalar 0-mode, depends on the relation
between the bulk mass and two ~“brane-localized” masses

In general: tuning required to obtain a light mode (compared to the KK scale)

(The fact that the possibility exists, is tied to the SUSY limit of the XD framework)

e Nevertheless, there are other ways of getting naturally localized 4D scalars...




Using the Extra Real Estate

1) Consider the 5th polarization of a 5D gauge field

lhiALy e = =k oiess (Dirichlet at both y =0, L)
(4D gauge symmetry broken by b.c.’s)

Then As obeys (+,+) b.c.’s (Neumann at both y =0, L)

In a warped background, the EOM for As is:

2k L
02 (*fo) =0 = foly) = Noa 2(y) s

(additive constant forbidden by b.c.’s)

(near the IR brane”, or
where warp factor smallest)

==p [ocalization at y = L

e 4D scalar from As can be light and have non-trivial couplings to other light fields

e Notice there are no adjustable parameters, localization happens dynamically!




Using the Extra Real Estate

2) Strongly interacting fermions can form scalar bound states

e Attractive channels from KK gluon exchange

e KK gluons localized near y = L

KK wavefunctions L» coupling increases when

fermion closer to IR brane

Ly Upshot:

A fermion 0-mode e Fermion localization triggers formation

of bound state (also a condensate)

15 mode
[ 274 mode e Resulting scalar bound state is effectively
3" mode | localized on IR brane (because fermion

0 | constituents are!)

e Scalar mass set dynamically well below KK scale




Models: Examples

Universal Extra Dimensions

Warped Extra Dimensions (Randall-Sundrum)




Universal Extra Dimensions (UED)

Assumption: maybe the SM lives in 4+n flat dimensions

— All SM particles have KK excitations that can be studied at colliders

Models in 5D and 6D have been studied...

z 5D
KK decompositions rather simple, tree-level spectra given by TR
. j2_|_k2

R

6D

Loop effects play a central role:

5D UED: first level 6D UED: (1,1) level states

= 1/R = 500 GeV

Xe]
(S,
o

Mass [GeV]

{1

(from Cheng, Matchev & Schmaltz) (from Ponton & Wang)




Some Interesting Features

e KK states can be relatively light (few hundres GeV)

e KK parity: natural dark matter candidates (more later)

e |[n 6D:

e An understanding for number of generations based on anomaly cancellation

e Higher-dimensional spacetime symmetries lead to discrete symmetries that:
Can explain matter stability (even if baryon number violated near the weak scale)

Predict three right-handed neutrinos

Predict that neutrinos should be Dirac particles

e Phenomenology of first KK level similar to SUSY (missing energy signals)

e Phenomenology of second KK level can lead to well-defined resonances




The Randall-Sundrum Scenario

The magic of curvature (warping)

Assumptions:

e 5D spacetime, with 5D cosmological constant } * Soln. to Einstein’s Eqns.

e Slicing with 4D Lorentz

g LF : NN 1 " ; ;
Compactification on the ““Interval P s e

Spacetime described by the line element

ds® = e”**¥q,, dz"dz” — dy’ el

k is the spacetime curvature

B Fields can either propagate in
iy the bulk, or be stuck to one
IR brane

— of the “branes”
y=L

UV brane —=




The Randall-Sundrum Scenario

The magic of curvature (warping)

The point is that scales at different points in the XD are measured differently

To illustrate, consider a field ¢1r localized on the IR brane:

52 /d%dy V=G {5(?J ) BG“”(‘L%R@V@R — i (QﬁR o U%R)Ql }
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The magic of curvature (warping)

The point is that scales at different points in the XD are measured differently

To illustrate, consider a field ¢1r localized on the IR brane:

52 /d%dy V=G {5(?J ) BG“”(‘L%R@V@R — i (QﬁR o U%R)Ql }

Bt ’ il 2
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The Randall-Sundrum Scenario

The magic of curvature (warping)

The point is that scales at different points in the XD are measured differently

To illustrate, consider a field ¢1r localized on the IR brane:

52 /d4:vdy V=G {5(9 ) BGW&L%R@V@R — i (QﬁR o U%R)Ql }

4 1 g y ot 2
56 QkLU“ 5’“@511%81/@5]1% e 4MJ)\IR (Cb%R =7 U?R) }

\

4 1 i e ~ . 2
5 OrrO"OrR — AIR (¢%R e U%Re %L) }

\\




The Randall-Sundrum Scenario

The magic of curvature (warping)

The point is that scales at different points in the XD are measured differently

To illustrate, consider a field ¢1r localized on the IR brane:

52 /d%dy V=G {5(?J ) BG“”(‘L%R@V@R — i (QﬁR o U%R)Ql }

4 1 & y % 2
56 QkLU“ 5’“@511%81/@5]1% e 4kL)\IR (Cb%R =7 U?R) }

\

4 1 i e ~ . 2
5 OrrO"OrR — AIR (¢%R e U%Re %L) }

\\

If instead the field was localized on the UV brane, ¢y v : all warp factors are unity

y 2 ~ 2
V= S ((b%]v — v%]\/) + AIR (gb?R — U%R€_2kL) (Hierarchically different vev’s)




The Randall-Sundrum Scenario

The magic of curvature (warping)

Rule of thumb: all mass parameters on IR brane are warped down by et

L:lginetic = \P@\P [\If] =50

Mass dimension in natural units

[:Zinetic 2 wﬁw [w] m 3/2

Consider a 4-fermion operator (relevant for e.g. flavor):

il o

L5 = F(‘Pﬁl’z)(‘if?&h) ) L4 = R2(AL) (h102) (W31)4)

~warped down” \ ‘ volume suppression
scale A = e *LA for bulk fields




The Randall-Sundrum Scenario

The magic of curvature (warping)

Rule of thumb: all mass parameters on IR brane are warped down by Sk

nginetic = \If@\lf [\If] =50

Mass dimension in natural units
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The Randall-Sundrum Scenario

The magic of curvature (warping)

Rule of thumb: all mass parameters on IR brane are warped down by Sk

nginetic = \If@\lf [\If] =50

Mass dimension in natural units

ﬁiinetic 2 wﬁw [w] e 3/2

Consider a 4-fermion operator (relevant for e.g. flavor):

/
Gy <
= 3 (U102)(V30y) wmp  Ly=-

84
i
: A2(AL)

(Y1102) (P31p4)

From mass dimension

of 4D operator Each KK mode — V2kL
o \ 0-mode near IR — /(1 — 2¢c)kL

— / dy G_Qk(L_y)fff2f§f4 0-mode flat — 1
0

0-mode near UV — exp. suppression
Eff. volume for integral — 1/kL




The Randall-Sundrum Scenario

The warp factor can naturally accommodate the EW and Planck (say) scales, provided
the Higgs (or the source of EWSB) is localized near the IR brane

Model building:

e Original RS scenario had all SM fields on the brane

Only gravitons propagate in the bulk and have KK modes

e But only Higgs needs to be on IR brane. Bulk fields buy you interesting physics:

e Understand exponential fermion mass hierarchies o

{ T P1ve) e

with o’ exp. suppr.

e Suppress dangerous FCNC’s from higher-dimension operators

e Other calculable FCNC’s also suppressed

— Essentially a theory of flavor with physics at the TeV scale!

e Accommodates gauge coupling unification, and more...




End of Part |



