Charged Current Interaction measurements in MiniBooNE

hep-ex/0706.0926

Teppei Katori for the MiniBooNE collaboration Indiana University
NuInt 07, Fermilab, May., 31, 07

Teppei Katori, Indiana University, N

Charged Current Interaction measurements in MiniBooNE

hep-ex/0706.0926

outline

- 1. CCQE events in MiniBooNE
- 2. Prediction for CCQE events
- 3. CCQE data-MC comparison
- 4. Fit results
- 5. Anti-neutrino CCQE events
- 6. Conclusion

 v_{μ} charged current quasi-elastic (v_{μ} CCQE) interaction is the most abundant (~40%) and the fundamental interaction in MiniBooNE detector

MiniBooNE detector

 v_{μ} charged current quasi-elastic (v_{μ} CCQE) interaction is the most abundant (~40%) and the fundamental interaction in MiniBooNE detector

 ν_{μ} CCQE interactions (v+n $\rightarrow \mu$ +p) has characteristic two "subevent" structure from muon decay

 $v_{\mu} + n \rightarrow \mu + p$ $\mu \rightarrow v_{\mu} + v_{e} + e$

35.0% cut efficiency

197,308 events with 5.58E20POT

Cut and efficiency summary

total 2 subevents	54.2%
muon in beam window (4400ns < Time < 6400ns)	52.9%
muon veto hits < 6 and Michel electron veto hits < 6	46.4%
muon tank hits > 200 and Michel electron tank hits < 200	41.6%
fiducial reconstruction for muon	41.3%
muon and electron distance < 100cm	35.0%

All kinematics are specified from 2 observables, muon energy E_{μ} and muon scattering angle θ

Energy of the neutrino E_{ν} and 4-momentum transfer Q^2 can be reconstructed by these 2 observables

$$E_{\nu} = \frac{2(M - E_{B})E_{\mu} - (E_{B}^{2} - 2ME_{B} + m_{\mu}^{2} + \Delta M^{2})}{2[(M - E_{B}) - E_{\mu} + p_{\mu}\cos\theta_{\mu}]}$$

$$Q^{2} = -m_{\mu}^{2} + 2E_{\nu}(E_{\mu} - p_{\mu}\cos\theta_{\mu})$$

Predicted event rates (NUANCE Monte Carlo)

Casper, Nucl.Phys.Proc.Suppl. 112 (2002) 161

Relativistic Fermi Gas (RFG) Model

Smith and Moniz, Nucl., Phys., B43(1972)605

Carbon is described by the collection of incoherent Fermi gas particles. All details come from hadronic tensor.

$$(W_{\mu\nu})_{ab} = \int_{Elo}^{Ehi} f(k, q, w) T_{\mu\nu} dE$$
: hadronic tensor

f(k,q,w): nucleon phase space density function

$$T_{\mu\nu} = T_{\mu\nu}(F_1, F_2, F_A, F_P)$$
: nucleon tensor

$$F_A(Q^2) = g_A/(1 + Q^2/M_A^2)^2$$
: Axial form factor

Ehi: the highest energy state of nucleon = $\sqrt{(p_F^2 + M^2)}$

Elo: the lowest energy state of nucleon =
$$\sqrt{(p_{\scriptscriptstyle F}^2+M^2)}-w+E_{\scriptscriptstyle B}$$

Relativistic Fermi Gas (RFG) Model

Smith and Moniz, Nucl.,Phys.,B43(1972)605

Carbon is described by the collection of incoherent Fermi gas particles. All details come from hadronic tensor.

$$(W_{\mu\nu})_{ab} = \int_{Elo}^{Ehi} f(k, q, w) T_{\mu\nu} dE$$
: hadronic tensor

f(k,q,w): nucleon phase space density function

$$T_{\mu\nu} = T_{\mu\nu}(F_1, F_2, F_A, F_P)$$
: nucleon tensor

$$F_A(Q^2) = g_A/(1+Q^2/M_A^2)^2$$
: Axial form factor

Ehi: the highest energy state of nucleon = $\sqrt{(p_F^2 + M^2)}$

Elo: the lowest energy state of nucleon = $\sqrt{(p_F^2 + M^2)} - w + E_B$

3 parameters are especially important to control nuclear effect of Carbon;

 $M_A = 1.03 GeV$: axial mass

P_F = 220MeV : Fermi momentum

 $E_{\rm B} = 34 \text{MeV}$: binding energy

CCQE kinematics phase space

The data-MC agreement is not great

Since data-MC disagreements align on the Q² lines, not Ev lines, the source of data-MC disagreement is not the neutrino beam prediction, but the neutrino cross section prediction.

Teppei Katori, Indiana University, N

CCQE kinematics phase space

The data-MC agreement is not great

The data-MC disagreement is characterized by 2 features;

(1) data deficit at low Q² region

(2) data excess at high Q² region

Nuclear model parameters are tuned from electron scattering data, thus the best explanations of observed data-MC disagreements are something one cannot measure from the electron scattering data

- (1) data deficit at low Q² region
- → Pauli blocking
- (2) data excess at high Q² region
- \rightarrow Axial mass M_A

We tune the nuclear parameters in RFG model using Q² distribution;

$$M_A = tuned$$

$$P_{E} = fixed$$

$$E_{R} = fixed$$

Pauli blocking parameter "kappa" : κ

To enhance the Pauli blocking at low Q^2 , we introduced a new parameter κ , which is the scale factor of lower bound of nucleon sea and controls the size of nucleon phase space

Elo =
$$\kappa \sqrt{(p_F^2 + M^2)} - w + E_B$$

This modification gives significant effect only at low Q² region

We tune the nuclear parameters in RFG model using Q² distribution;

$$M_A = tuned$$

$$P_F = fixed$$

$$E_{\rm B}$$
 = fixed

$$\kappa$$
 = tuned

 M_A and κ are simultaneously fit to the data

2% change of κ is sufficient to take account the data deficit at low Q² region

Least χ^2 fit for Q² distribution

$$\chi^2 = (data - MC)^T (M_{total})^{-1} (data - MC)$$

 χ^2 minimum is found by global scan of shape only fit with $0.0 < Q^2 (GeV^2) < 1.0$

Input error matrices keep the correlation of st

keep the correlation of systematics

dependent

 π^+ production (8 parameters)

 π - production (8 parameters)

K⁺ production (7 parameters)

K⁰ production (9 parameters)

beam model (8 parameters)

cross section (20 parameters)

detector model (39 parameters)

The total output error matrix

keep the correlation of Q² bins

 $M_{total} = M(\pi^+ \text{ production})$

- + $M(\pi^- \text{ production})$
- + M(K⁺ production)
- + M(K⁰ production)
- + M(beam model)
- + M(cross section model)
- + M(detector model)
- + M(data statistics)

independent

 $M_A - \kappa$ fit result

 $M_A = 1.23 \pm 0.20(stat+sys)$

 κ = 1.019 ± 0.011(stat+sys)

circle: before fit star: after fit with 1-sigma contour triangle: bkgd shape uncertainty

dots: data with error bar dashed line: before fit solid line: after fit

dotted line: background

dash-dotted :non-CCQElike bkgd

Errors

The detector model uncertainty dominates the error in M_A

The error on κ is dominated by Q2 shape uncertainty of background events

	$\delta M_A(GeV)$	δκ
data statistics	0.03	0.003
neutrino flux	0.04	0.003
neutrino cross section	0.06	0.004
detector model	0.10	0.003
CCπ ⁺ background shape	0.02	0.007
total error	0.20	0.011

 $M_A - \kappa$ fit result

$$M_A = 1.23 \pm 0.20(stat+sys)$$

$$\kappa$$
 = 1.019 ± 0.011(stat+sys)

Although fit is done in Q² distribution, entire CCQE kinematics is improved

before

$$\chi^2/dof = 79.5/53$$
, $P(\chi^2) = 1\%$

after

$$\chi^2$$
/dof = 45.1/53, P(χ^2) = 77%

 M_A - κ fit result M_A = 1.23 ± 0.20(stat+sys) κ = 1.019 ± 0.011(stat+sys)

Although fit is done in Q² distribution, entire CCQE kinematics is improved

before

$$\chi^2/dof = 79.5/53$$
, $P(\chi^2) = 1\%$

after

$$\chi^2$$
/dof = 45.1/53, P(χ^2) = 77%

Teppei Katori, Ir

05/31/2007

Other kinematics distribution also show very good data-MC agreement (This is critical for MiniBooNE neutrino oscillation search experiment)

MiniBooNE collaboration, arXiv:0704.1500 [hep-ex] (2007)

 M_A only fit result $M_A = 1.25 \pm 0.12$ (stat+sys)

fit with fixing κ for 0.25<Q²(GeV²)<1.0

good agreement above 0.25GeV² but gross disagreement at low Q² region

This fit cannot improve entire CCQE phase space

 M_A only fit result $M_A = 1.25 \pm 0.12$ (stat+sys)

fit with fixing κ for $0.25 < Q^2(GeV^2) < 1.0$

good agreement above 0.25GeV² but gross disagreement at low Q² region

This fit cannot improve entire CCQE phase space

Anti-neutrino Q² distribution

MiniBooNE anti-neutrino CCQE
8772 events
(1651 total for pre-MiniBooNE data)

We use same cut with neutrino mode

The values of M_A and κ extracted from neutrino mode are employed to antineutrino MC, and they describe data Q^2 distribution well.

Anti-neutrino Q² distribution

MiniBooNE anti-neutrino CCQE
8772 events
(1651 total for pre-MiniBooNE data)

We use same cut with neutrino mode

The values of M_A and κ extracted from neutrino mode are employed to antineutrino MC, and they describe data Q^2 distribution well.

Anti-neutrino CCQE kinematics

MiniBooNE anti-neutrino CCQE
8772 events
(1651 total for pre-MiniBooNE data)

We use same cut with neutrino mode

The values of M_A and κ extracted from neutrino mode are employed to antineutrino MC, and they describe data Q^2 distribution well.

Anti-neutrino CCQE kinematics variables are described by the MC well, too.

6. Conclusion

MiniBooNE has large CCQE data set around 1GeV region

MiniBooNE successfully employee RFG model with appropriate parameter choices for $M_{_{A}}$ and κ

This new model can describe entire CCQE phase space well

The best fit parameters for MiniBooNE CCQE data are;

$$M_A = 1.23 \pm 0.20(stat+sys)$$

 $\kappa = 1.019 \pm 0.011(stat+sys)$

Our new model also works well in anti-neutrino data

MiniBooNE is currently taking the data with anti-muon neutrino beam

MiniBooNE collaboration

University of Alabama

Bucknell University

University of Cincinnati

University of Colorado

Columbia University

Embry Riddle University

Fermi National Accelerator Laboratory Western Illinois University

Indiana University

Los Alamos National Laboratory

Louisiana State University

University of Michigan

Princeton University

Saint Mary's University of Minnesota

Virginia Polytechnic Institute

Yale University

