

New Physics Searches with CMS

Jim Pivarski

on behalf of the CMS Collaboration

1 June, 2011

now

2011

2010

This talk: results from the $36-40 \text{ pb}^{-1}$ collected in 2010

2010

Explicit Models

- it's the physics we want to know
- easier to compare and combine with other experiments
- more limited scope

Simplified Model Topologies

- broadly applicable limits set on particle kinematics
- interaction between theorists and experimentalists

Experimental Signatures

- empirical: what was directly measured
- overall view of search program
- implictions for physics less evident

Ways of presenting search results

Explicit Models

- it's the physics we want to know
- easier to compare and combine with other experiments
- more limited scope

Simplified Model Topologies

- broadly applicable limits set on particle kinematics
- interaction between theorists and experimentalists

Experimental

Jim Pivarski

- empirical: what was directly measured
- overall view of search program
- implictions for physics less evident

▶ This talk is organized by experimental signature, for a broad overview

Ways of presenting search results

Explicit Models

- it's the physics we want to know
- easier to compare and combine with other experiments
- · more limited scope

Simplified Model Topologies

- broadly applicable limits set on particle kinematics
- interaction between theorists and experimentalists

Experimental

Jim Pivarski

- empirical: what was directly measured
- overall view of search program
- implictions for physics less evident
- ▶ This talk is organized by experimental signature, for a broad overview
- ► For most results, I will show a plot of the experimental channel and point to a paper reference for exact limits and analysis details

- Jets and MET
- Leptons
- Photons
- Cross-channels
- ▶ High-level objects (b-jets, τ , and top)
- ► Weird stuff (e.g. new detector signatures)

Generic searches for hadronic resonances dijet: hep-ex/1010.0203

ightharpoonup Z' or $G^* o qar q$

multijet: PAS EXO-11-001

• "quix" or RPV \tilde{g} $\rightarrow qq\bar{q}$

dijet mass

trijet mass

Generic searches for hadronic resonances dijet: hep-ex/1010.0203

ightharpoonup Z' or $G^* o qar q$

multijet: PAS EXO-11-001

• "quix" or RPV \tilde{g} $\rightarrow qq\bar{q}$

dijet mass

trijet mass

Dijet angular distributions

 $\mathsf{hep\text{-}ex}/1010.4439 \text{ and } \mathsf{hep\text{-}ex}/1102.2020 \text{ (update)}$

Centrality ratio

$$R_{\eta} = \frac{\textit{N}_{jj}(|\eta| < 0.7)}{\textit{N}_{jj}(0.7 < |\eta| < 1.3)}$$

New limits on quark compositeness:

$$\Lambda^+ > 5.6$$
 TeV (destr.) $\Lambda^- > 6.7$ TeV (constr.)

27 CMS

 $\alpha_T = p_{T2}/M_T$ where p_{T2} is the second-highest jet momentum

Only events with real MET have $\alpha_T > 0.55$ hep-ex/1101.1628 and PAS SUS-11-001

SUSY jets: special variables

Jim Pivarski 10/27

 $\alpha_T = p_{T2}/M_T$ where p_{T2} is the second-highest jet momentum

Only events with real MET have $\alpha_T > 0.55$ hep-ex/1101.1628 and PAS SUS-11-001

"Razor" analysis:

- interpret event as decay of two heavy objects: pp → MM
- ightharpoonup split jet activity into hemispheres; $M_R=$ hemisphere momentum in boosted frame
- ► $R = M_T^R/M_R$, search in R > 0.5

- ► Inclusive search for new physics in \geq 3 jets and missing energy (PAS SUS-10-005)
- Results expressed as limits on cMSSM and simplified models (below)
- ▶ Data file provided with acceptances, uncertainties, and limits as a function of simplified model particle masses

 Dilepton resonances: several kinematic regions for searches

7 CMS

 Dilepton resonances: several kinematic regions for searches

- ▶ Other exotica searches
 - non-resonant dimuons: large extra dimensions

PAS EXO-10-020

high muon multiplicity: lepton jets

 Dilepton resonances: several kinematic regions for searches

- Other exotica searches
 - non-resonant dimuons:
 large extra dimensions
 PAS EXO-10-020
 - high muon multiplicity: lepton jets

- SUSY searches
 - single leptonopp-sign dilepton
 - opp-sign dileptonsame-sign dilepton
 - ► ≥ 3 leptons

- SUS-10-006
- hep-ex/1103.1348
- hep-ex/1104.3168
 - SUS-10-008

hep-ex/1103.0981

Leptons: other resonances

Z boson p_T spectrum: channel for generic neutral heavy-to-light decays, e.g.

$$q^* o q Z$$

PAS EXO 10-025

Jim Pivarski 16/27

Leptons: other resonances

Z boson p_T spectrum:

channel for generic neutral heavy-to-light decays, e.g.

$$q^* \rightarrow q Z$$

PAS EXO 10-025

Jim Pivarski

Lepton jets: one or more low-mass, high- p_T $\gamma_{dark} \rightarrow \ell\ell$ from a hidden sector

Left: high-pT dimuons

Right: two dimuons per event

PAS EXO 11-013

18/27

G^* resonance simulation

limits with data in PAS EXO 10-019

data with non-resonant Large Extra Dimensions prediction

hep-ex/1103.4279

Cross-channels

None of the paper references in this talk are repeated

Search for $W' \to e \nu$ (left) and $W' \to \mu \nu$ (right)

	jets	MET	l	γ
jets		LED 800 11-003	leptoquarks	excited quarks: see high-pT Z
MET			W* hep-ex/2012.4943 hep-ex/103.0030	SUSY
l				excited leptons
γ				

Jim Pivarski 22/27

Search for $e^* \to e \gamma$ (left) and $\mu^* \to \mu \gamma$ (right)

Searches using high-level objects

Jim Pivarski 23/27

CMS

One surviving background event in a SUSY search with b-tagging

100

Search for resonances in top-antitop pairs (μ + jets and e + jets channels)

tau pair mass (GeV/c2)

PAS TOP-10-007

Microscopic black holes

Jim Pivarski 24/27

Extreme cross-channel: high multiplicities of every kind of particle $S_T = \sum_{E_T > 50 \text{ GeV}} E_T$ of jets, $e, \ \gamma, \ \mu$

Set limits on (4 + n)-D Planck scale M_D (right)

Heavy stable charged particles

Jim Pivarski

Search for anomalously large dE/dx (for $p_T>15~{\rm GeV}/c)$ Any particle with $\beta\ll 1$ is BSM Calculate mass from dE/dx and $|\vec{p}|$

hep-ex/1101.1645

hep-ex/1011.5861

- ▶ Broad coverage of experimental signatures: the 2010 data were shaken through a tight sieve, searching for new physics
- CMS public results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

LHC dataset is still growing exponentially: it is reasonable to believe that a dramatic discovery may be in store for us soon

CMS quarter-view

Jim Pivarski 29/27

