

An Introduction to Charged Particle Tracking

Mike Hildreth University of Notre Dame

2010 Hadron Collider Physics Summer School Fermilab, August 16 – 27 While we wish tracking were still this easy, real bubble chambers don't cut it for a 25ns cycle time
Instead, we need the electronic version
More granular
Less resolution
More complicated
How do we get there while satisfying
technical requirements

- performance
- operability
- stability

- spatial requirements
 - size, volume
 - cost requirements

Outline for these lectures

- Lecture 1

- Motivation
- Tracking vocabulary
- Detector Techniques
- Lecture 2:
 - Algorithmic Techniques for Pattern Recognition, Fitting
 - Tracking system designs
 - Lecture 3
 - Commissioning/Calibrating a tracking system
 - Environmental Challenges
 - Radiation damage, occupancy, etc.
 - Tracking information used in event triggers
 - Tracker upgrades

Why Track?

UNIVERSITYOF

- Basically, everything interesting happens within the first ~10⁻¹² seconds after the beams collide
 - we can only see "final-state" particles
 - our physics knowledge is based on "working backwards in time" to infer what actually happened in the initial collision
 - the more precisely the final-state particles are measured, the more accurately we can determine the parameters of their parents
- Tracking provides precise measurements of
 - particle production positions
 - can reveal the presence of long-lived particles
 - particle momenta
 - complimentary to calorimeter at low energy
 - particle trajectories to the outer detectors
 - association with calorimeter energy deposits, muon hits
 - allows "global pattern recognition" of physics objects

Tracking Provides: Production position

HADRON

COLLIDER PHYSICS

Tracking Provides: Prod/decay position

UNIVERSITY OF NOTRE DAME

Tracking Provides: Prod/decay position

HADRON

COLLIDER PHYSICS

Tracking Provides: Prod/decay position

LHCb Event Display

Tracking Provides: momentum

• Resolution complementary to calorimeters at low energies:

p_{_} [GeV/c]

40

Tracking Provides: momentum

- Determination of particle four-vectors \rightarrow resonances

CDF: WZ and ZZ analysis

LHCb: exclusive charm reconstruction

Tracking provides: Global objects

• Electron

Tracking provides: Global objects

• or photon?

Tracking provides: Global objects

Visualizing particle trajectories

• Start with the basics: (more detail later)

Lorentz force: charged particles follow a curved trajectory in a magnetic field

- radius of curvature inversely proportional to momentum
- need to measure:
 - magnitude of B field
 - radius of curvature
- Radius measurement implies knowing where the particle is at several points along its trajectory
 - the particle must interact with a detection medium to leave a trace
 - \Rightarrow lonization

Ionization Loss: Bethe-Bloch Equation

- Relativistic Formula: Bethe (1932), others added more corrections later
- Gives "stopping power" (energy loss = dE/dx) for charged particles passing through material:

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2}\right]$$

where

- A, Z: atomic mass and atomic number of absorber
- z: charge of incident particle
- β,γ : relativistic velocity, relativistic factor of incident particle
- $\delta(\beta\gamma)$: density correction due to relativistic compression of absorber
- I: ionization potential

 T_{max} : maximum energy loss in a single collision; $T_{max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1+2\gamma m_e/M + (m_e/M)^2}$ $\frac{K}{A} = 4\pi N_A r_e^2 m_e c^2/A = 0.307075 \text{ MeV g}^{-1} \text{cm}^2$, for A = 1g mol⁻¹

dE/dx has units of MeV cm²/g

x is ρs , where ρ is the material density, s is the pathlength

source for this and following: PDG

Ionization Loss: minimum ionization

- Position of minimum is a function of $\beta \gamma = p/Mc$
- occurs around p/Mc = 3-3.5
 - ~ independent of material
- Characteristic shape of 1/β² fall-off followed by relativistic rise
- "Rule of thumb":
 dE/dx ~ 2 MeV/cm ×ρ (g/cm³)
- Typical values:
 - liquids/solids:
 - ~ few MeV/cm
 - gases:
 - ~ few keV/cm
 - ⇒ valid over range of most common momenta in collider experiments

First complication: Multiple Scattering

- Often called Multiple Coulomb Scattering: momentum transfer between particle and medium diverts particles from straight path
 - usually electromagnetic; hadronic interactions contribute, too
 - scattering angles well-described by Molière theory:

Here θ_0 is a (mostly) gaussian distribution defined as $\theta_0 = \theta_{\text{plane}}^{\text{rms}} = \frac{1}{\sqrt{2}} \theta_{\text{space}}^{\text{rms}}$ with a width of

$$\theta_0 = \frac{13.6 \text{ MeV}}{\beta cp} z \sqrt{x/X_0} \Big[1 + 0.038 \ln(x/X_0) \Big]$$

where X_0 = radiation length of material

17 August 20-23, 2010

Second Complication: Energy Loss

- Energy loss in material can be significant (c.f. ATLAS or CMS trackers): radius of curvature *increases* along path as *p* falls
- Fluctuations in Energy Loss in thin/thick samples of material:

- Few collisions
- some with large energy transfer
- large fluctuations in energy loss
 ⇒ Landau distribution
- e.g.: 300um thick Si sensor:

 ΔE_{mp} = 82 keV, < ΔE > ~ 115 keV

- Many collisions
- wide spectrum of energies
- distribution tends toward gaussian
- $-\Delta E_{mp} \approx <\Delta E >$

Third Complication: Bremsstrahlung

- Large (can be catastrophically so) discrete energy loss
- acceleration due to interaction with coulomb field of nuclei
- Dominant energy loss mechanism for electrons and positrons:

$$\frac{d\sigma}{dk} = \frac{A}{X_0 N_A k} \left(\frac{4}{3} - \frac{4}{3}y + y^2\right)$$

$$\propto Z^2 \alpha^3$$
where
 $k = \text{photon energy}$
 $y = k/E$
 $E = \text{lepton energy}$
Overall probability of
photon emission $\propto m^{-4}$
becomes important for

high energy muons

COLLIDER PHYSICS

Third Complication: Bremsstrahlung

• Single 100 GeV electron in CMS tracker:

Ionization Loss: full spectrum

• Full dE/dx description includes many different effects

Tracking Basics

- Assuming we can make hits now, what do we do with them?
- Charged particles curve in an axial magnetic field:
 - transverse momentum $p_{\rm T}$ (Gev/c) = 0.3 *B R*
 - *R* is the radius of curvature (m), *B* is field strength (T)
- What matters is how well we can measure the radius R
 - we actually measure the sagitta s
 - A little algebra

$$\frac{L/2}{R} = \sin\frac{\theta}{2} \approx \frac{\theta}{2} \text{ for small angles; } \theta \approx \frac{L}{R} = \frac{0.3BL}{p_T}$$
$$s = R\left(1 - \cos\frac{\theta}{2}\right) \approx R\left(1 - (1 - \frac{\theta^2}{8})\right) = R\frac{\theta^2}{8} \approx \frac{0.3BL^2}{8p_T}$$

For three points, $s = x_2 - \frac{1}{2}(x_1 + x_3)$ $\rightarrow ds = dx_2 - dx_1/2 - dx_3/2$ assuming $\sigma(x) \equiv dx$ (uncorrelated errors) $\sigma^2(s) = \sigma^2(x) + 2(\sigma^2(x)/4) = 3/2 \sigma^2(x)$

August 20-23, 2010

23

Mike Hildreth – Charged Particle Tracking

Tracking Basics

• Putting all of this together (for a three-hit tracker):

$$\frac{\sigma(p_T)}{p_T} \bigg|_{p_T}^{meas.} = \frac{\sigma_s}{s} = \frac{\sigma_x}{s} \sqrt{3/2} = \frac{\sigma_x \cdot p_T}{0.3 \cdot BL^2} \sqrt{96}$$

where σ_x is the single-hit resolution.

- Note that this quantity $\sigma(p_{\rm T})/p_{\rm T}$
 - degrades linearly with σ_x and p_T
 - improves linearly with B
 - improves quadratically with L
- For N (N >10) equally-spaced points,

Gluckstern, NIM 24 (1963) 381

 $\frac{\sigma(p_T)}{p_T^2}$

So,

$$\frac{\sigma(p_T)}{p_T} \bigg|_{T}^{meas.} = \frac{\sigma_x \cdot p_T}{0.3 \cdot BL^2} \sqrt{720/(N+4)}$$

Effects of Complications

- multiple coulomb scattering in material
 - scattering in a thin layer of material introduces random angular errors
 - this adds an additional error to the p_{T} measurement:

 $\frac{\sigma(p_T)}{p_T}\Big|^{ms} = \frac{28 MeV}{0.3 \cdot BL} \sqrt{x / X_0} \frac{p_T}{\beta c p}$

x $\delta \Psi$

X₀ = radiation length of material

- Ionization Energy Loss
 - curvature decreases with pathlength
 - fluctuations in energy loss can be large if there is a lot of material:

$$\frac{\sigma(p_T)}{p_T} \bigg|^{Eloss} \sim \frac{x/X_0}{p}$$

 \Rightarrow Both effects *decrease* with $p_{\rm T}$

NOTRE DA

- Now that we have a bit of theory, let's take a look at how one can use ionization loss to provide the hits used in track fitting.
- Three basic groups of tracking detectors:
 - gaseous
 - solid state
 - scintillating
- Each converts the ionization left by the passing of a charged particle into an electrical signal
 - charge collection
 - light collection/conversion with photo-cathode
- Ideally, we would build a fast electronic bubble chamber with submicron hit resolution and infinite three-dimensional granularity
 - unfortunately, reality intervenes and we have to actually be able to pay for it, never mind actually build it
 - many compromises and optimizations are required

Some Detector Physics Basics

• Reminder:

Ionization Energy loss: on average ~ 2 MeV/cm $\rho/(g \text{ cm}^{-3})$

- liquids/solids: ~ few MeV/cm
- gases: ~ few keV/cm
- Ionization potential for materials:
 - primary ionization potential (~10-15 eV) plus some additional energy to separate electron and ion: total of ~30eV per atom
 - So, for 1 cm of gas, 3000 eV lost \Rightarrow 100 primary electron/ion pairs
 - these ionize further, so add another factor $2-3 \Rightarrow 200-300 \text{ e}^{-/\text{cm}}$
 - (Note: not a very big signal!)
 - detectors based on ionized gas need Multiplication
 - solid-state detectors are ok in this regard
 - can't be too thick, though
 - » problems with multiple scattering

cathode

anode

Charge Multiplication

- because E∞1/r, fields near wire become very large (>10V/μm = 10kV/cm)
- · electrons reach energies sufficient to ionize gas
- secondary electrons also accelerated
- For sufficiently large fields, an avalanche forms ⇒ large amount of charge deposited on anode (sense) wire

Small radius wires with large voltage; ionized electrons drift in:

gas must contain quenching agents to absorb photons generated in avalanche

SWPC Operational Modes

- ionization mode
 - full charge collection
 - no multiplication, gain ~ 1
- proportional mode
 - multiplication of ionization
 - signal proportional to dE/dx
 - secondary avalanches must be quenched
 - gain $\sim 10^4 10^5$
- limited proportional mode
 - (saturated, streamer)
 - strong photoemission
 - secondary avalanches require strong quenching or HV pulsing
 - gain ~ 10¹⁰
- Geiger mode
 - massive photoemission over full length of anode wire
 - discharge stopped by HV cut

Mike Hildreth – Charged Particle Tracking Voltage (V)

- Simplest possible device
- Central (anode) sense wire
- Large voltage difference causes electrons to drift
- Charge avalanche occurs due to large fields near wire surface
- Binary (hit or not) no attempt to measure timing, pulse height, etc.
- huge signals (given correct gas and voltage) \Rightarrow simple electronics

GTDs: Straw Tube

- Next step up from Geiger counter
 - operates in "proportional mode" where total charge detected is proportional to the number of incident electrons
 - timing information gives radial position information
- Construction:
 - each tube has small central wire (15-50 μ m radius), typically small radius (5mm-1cm) outer cylinder of stiff, thin material (100-200 μ m)
 - built into arrays of tubes to provide multiple hits along trajectory

Zeus Tracker

GTDs: Atlas Straw Tubes (TRT)

Space Frame

Radiator

Shel

-Partition

Straws

- 4mm straws, 31μ m wires
- fast charge collection: ~45ns
- gain of 25,000
- particle ID (e/ π separation) using transition radiation

Module

Choice of optimization point:

- decided a large number of hits/track is desirable
 - driven to some sort of gas-based detector for fabrication cost reasons
 - more hits with worse resolution/hit
- individual element volume is a compromise between
 - maximum signal collection time (occupancy/multi-hit issue)
 - smaller volume is better (Atlas arrived at ~40-50ns)
 - channel count
 - smaller volumes \Rightarrow more channels \Rightarrow more cost

Straws vs. Open Drift Cell structure

- mostly a question of robustness
 - physical structure of straws more robust than free wires
 - damage from wire breakage limited to individual straw tube
 - cross-talk minimized: cathode acts as ground shield
- However: any gas detector in this environment faces serious ageing issues
 - 10 Mrad expected dose in 10 years (10 C/cm total charge!)

GTDs: Multi-Wire Proportional Chambers

NOTRE DA

33

• "Open" MWPC

- arrays of cathode "field" wires used to create uniform electric field

- uniform electric field creates uniform drift velocity, so position can be determined by time measurement
 - modulo edge and near-wire corrections (detailed field map)
 - with appropriate gas, drift distances can be very long
- detector is inherently "thin": many measurements and large volumes possible without adding a huge amount of material

GTDs: CDF COT

• optimized for "high"-luminosity tracking

- narrow drift cells insure short collection times: trigger input
- tilted cells insure wellseparated hits for radial tracks, limit multiple tracks/wire, limit left-right ghosts
- Note: stereo wires

GTDs: BaBar Drift Chamber

- Optimized for high-rate and low-mass
 - helium-based gas mixture (80% He, 20% isobutane)
 - gas + wires only gives $0.3\% X_0$ at 90
 - small cells (short drift times) allow use in trigger
 - also used for dE/dx measurement

37

Alice

GTDs: Time Projection Chamber (TPC)

- Set up a situation where E∥B
 - electrons drift along the z axis
 - looong drift distances
 - measure time and arrival position
- True 3-D detectors
- Many measurements/track
 - allows good particle ID with dE/dx
- Only gas in active volume
 - very little material
 - Large track densities possible

Very long drift (typically > 2 m) implies/requires:

- slow detector (~40 μ s)
- no impurities in gas
- uniform E-field
- strong & uniform B-field

GTDs: TPCs

- \Rightarrow special cathode geometry
 - cathode pads used to measure orthogonal coord.
 - granularity key for single hit resolution
 - ion clearing/gating:
 - special precautions to get rid of avalanche remnants

typical resolutions: $\sigma_{xy} \sim 200 \mu m$, $\sigma_z \sim <1 mm$

Charged Particle Tracking

GTDs: TPCs

39

- wires on end plane only measure one coordinate
- \Rightarrow special cathode geometry
 - cathode pads used to measure orthogonal coord.
 - granularity key for single hit resolution
 - ion clearing/gating:
 - special precautions to get rid of avalanche remnants

Charged Particle Tracking

GTDs: TPCs

• Large track densities *are* possible!

STAR

GTDs: Alice TPC

August 20-23, 2010 41

Issues for GTDs

- cover large volumes relatively cheaply
- nearly 100% sensitive volume
- Gas composition/stability/contamination
 - basically a black art
 - need gases that give good multiplication, but not too much
 - need gases with low electron diffusion for good resolution
 - need components to quench the avalanches
 - need to avoid contaminants that ruin the performance
 - sometime contaminants can be beneficial (c.f. CDF and H_20)
 - all of this must be monitored constantly
- electric field mapping (with data)
 - distortion corrections important for ultimate resolution
- limited single hit resolution
 - unavoidable given drift/diffusion/avalanche considerations
 - best resolution achieved was ~30-40 μ m/hit (Mark II DCVD)

Solid Detectors: Scintillating Fibers

 Small, multi-clad fibers doped with scintillating dye & waveshifter can function as a tracking device

- DØ Central Fiber Tracker: ~77k fibers
- 8 Barrels: each barrel layer has axial and 3° stereo ribbons (XU, XV, XU...)
- Light collection: visible light photon counters (VLPCs)

- solid state photodetectors
- high-gain (~40,000)
- high quantum efficiency
- fast use in trigger

- Why Silicon?
 - crystalline silicon band gap is 1.1 eV (c.f. ~20eV for typical gases)
 - yields 80 electron-hole pairs/ μ m for minimum-ionizing track
 - (1 e-h pair per 3.6 eV of deposited energy)
 - 99.9% of ejected electrons have less than $1\mu m$ path length
 - fine-granularity devices can easily be made
 - \Rightarrow detector performance could be as good as emulsion/bubble chamber
 - Integrated Circuit manufacturing techniques make just about anything possible, and at industrial prices
 - no real need to "home-grow" these detectors
 - just buy what you need...

Silicon Basics

- Detection still based on collecting electrons from dE/dx in material
- semiconductor structure:

- the problem: recombination
 - many, many more free charge carriers in a semiconductor than what is liberated through ionization \Rightarrow electrons re-combine with holes

Silicon Basics: Doping and PN

• The solution(s): 1. modify material structure

N-type silicon has electron donor atoms (P) added to create additional electron states

- 2. Modify charge structure: put P and N together (PN Junction)
 - in thermal equilibrium, Fermi levels become equal due to drift of electrons/holes across junction

Near junction, electrons bind to hole sites, creating negative ions, leaving positive ions behind. Bulk E-field stops motion of more particles ⇒ Depletion region: no free charge carriers!

Silicon Basics: PN Junction, Bias

3. Apply a voltage to suppress bulk E field, increase size of depletion layer to encompass entire volume: "Reverse Bias"

At the depletion voltage, no more free charge carriers exist in the semiconductor; any additional e-h pairs generated can drift to the edges

In reality, use bulk silicon of one type, make "electrodes" out of the other type: Al SiO₂ insulator

Mike Hildreth - Charged Particle Tracking

UNIVERSITY OF NOTRE DAME

SSTDs: Silicon Microstrips

• The easiest thing to do is put down sensor lines, read out at end

• Charge sharing improves position resolution:

- Typical pitch width: $50\mu m 200\mu m$
 - one strip: width/ $\sqrt{12}$
 - two stips: width/4
 - more than two: width/2

SSTDs: Silicon Microstrips

• Exquisitely complicated micro-mechanical construction

SSTDs: Silicon Microstrips

- inherently 2-D: go to double-sided (or glue sensors at an angle for stereo) for r-z, but still 2-D devices
- "shingle" geometry common

SSTDs: Pixels

• CCDs (charge-coupled devices) (what's in your digital camera)

 Thin depletion layer; active p-type epitaxial layer of ~20μm; generated charge reflected off of p⁺ substrate and eventually collected

Particle trajectory

SLD VXD3:

51

- 3x10⁸ pixels
- world-record for collider detector hit resolution: $\sim 4\mu m$

Complicated pixel structure built on surface; Readout is serial – I shifts move each row down, R- ϕ shifts read out the columns. Can take 100ms to read out a large detector

technology still advancing...

SSTDs: Hybrid Pixels

COLLIDER PHYSICS

- Use fast, intelligent, rad-hard devices for high-occupancy environments
 - sensors separate from readout electronics bonded together

Pixel Modules and systems

SSTDs: Issues

Support infrastructure

- even with miniature electronics, lots of power dissipated
 - cooling necessary in active volume
- detectors tend to be "thick" lots of material from supports, sensors

• \$\$\$/µm³

- even with miniaturization, channels cost money

54 August 20-23, 2010

SSTDs: "services"

UNIVERSITY OF NOTRE DAME