Data Analysis

Beate Heinemann

UC Berkeley and Lawrence Berkeley National Laboratory

Introduction and Disclaimer

- Data Analysis in 3 hours!
 - Impossible to cover all...
 - There are gazillions of analyses
 - Also really needs learning by doing
 - That's why your PhD takes years!
 - Will try to give a flavor using illustrative examples:
 - What are the main issues
 - And what can go wrong
 - Will try to highlight most important issues
- Please ask during / after lecture and in discussion section!
 - I will post references for your further information also
 - Generally it is a good idea to read theses

Outline

- Lecture I:
 - Measuring a cross section
 - focus on acceptance
- Lecture II:
 - Measuring a property of a known particle
- Lecture III:
 - Searching for a new particle
 - focus on backgrounds

Cross Section: Experimentally

Number of observed events: counted

Background:

Measured from data /
calculated from theory

 $\sigma = \frac{N_{obs} - N_{BG}}{N_{obs}}$

JLdt · ε

Cross section σ

Luminosity:
Determined by accelerator,
trigger prescale, ...

Efficiency: optimized by experimentalist

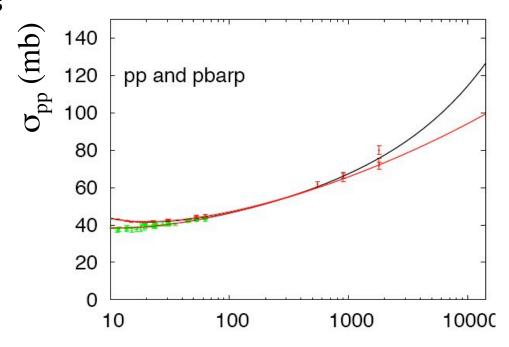
Uncertainty on Cross Section

You will want to minimize the uncertainty:

$$\frac{\delta\sigma}{\sigma} = \sqrt{\frac{\delta N_{obs}^2 + \delta N_{BG}^2}{(N_{obs} - N_{BG})^2} + \left(\frac{\delta\mathcal{L}}{\mathcal{L}}\right)^2 + \left(\frac{\delta\epsilon}{\epsilon}\right)^2}$$

- Thus you need:
 - N_{obs}-N_{BG} small (I.e. N_{signal} large)
 - Optimize selection for large acceptance and small background
 - Uncertainties on efficiency and background small
 - Hard work you have to do
 - Uncertainty on luminosity small
 - Usually not directly in your power

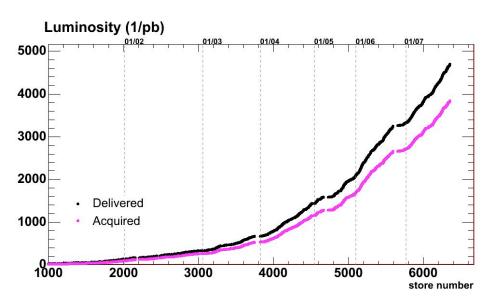
Luminosity

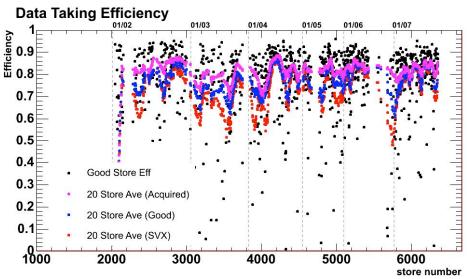

Luminosity Measurement

- Many different ways to measure it:
 - Beam optics
 - LHC startup: precision ~20-30%
 - Ultimately: precision ~5%
 - Relate number of interactions to total cross section
 - absolute precision ~4-6%, relative precision much better
 - Elastic scattering:
 - LHC: abslute precision ~3%
 - Physics processes:
 - W/Z: precision ~2-3% ?
- Need to measure it as function of time:
 - L = $L_0 e^{-t/\tau}$ with $\tau \approx 14h$ at LHC and L_0 = initial luminosity

Luminosity Measurement

Rate of pp collisions: $R_{pp} = \sigma_{inel} \epsilon L_{inst}$


- Measure fraction of beam crossings with no interactions
 - Related to R_{pp}
- Relative normalization possible
 - if Probability for no interaction>0 (L<10³² cm⁻²s⁻¹)
- Absolute normalization
 - Normalize to measured inelastic pp cross section
 - Measured by CDF and E710/E811
 - Differ by 2.6 sigma
 - For luminosity normalization use the error weighted average



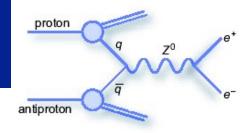
	1.96 TeV	14 TeV
O _{inelastic}	60.7±2.4 mb	125±25 mb
	(measured)	(P. Landshoff)

Your luminosity

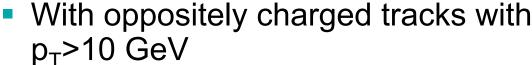
- Your data analysis luminosity is not equals to LHC/Tevatron luminosity!
- Because:
 - The detector is not 100% efficiency at taking data
 - Not all parts of the detector are always operational/on
 - Your trigger may have been off / prescaled at times
 - Some of your jobs crashed and you could not run over all events
- All needs to be taken into account
 - Severe bookkeeping headache

Acceptance / Efficiency

- Actually rather complex:
 - Many ingredients enter here
 - You need to know:

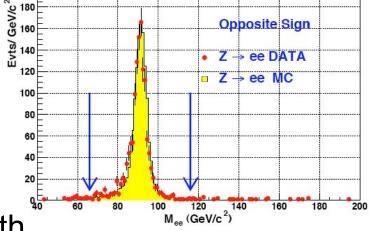

 $\varepsilon_{\text{total}} = \frac{\text{Number of Events used in Analysis}}{1}$

Number of Events Produced

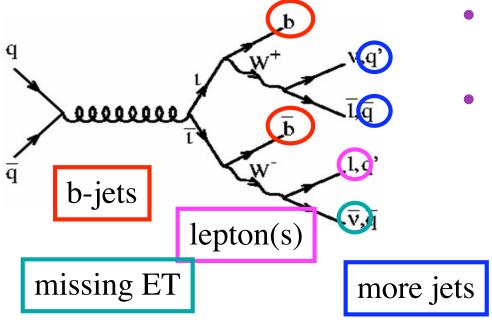

- Ingredients:
 - Trigger efficiency
 - Identification efficiency
 - Kinematic acceptance
 - Cut efficiencies
- Using three example measurements for illustration:
 - Z boson, top quak and jet cross sections

Example Analyses

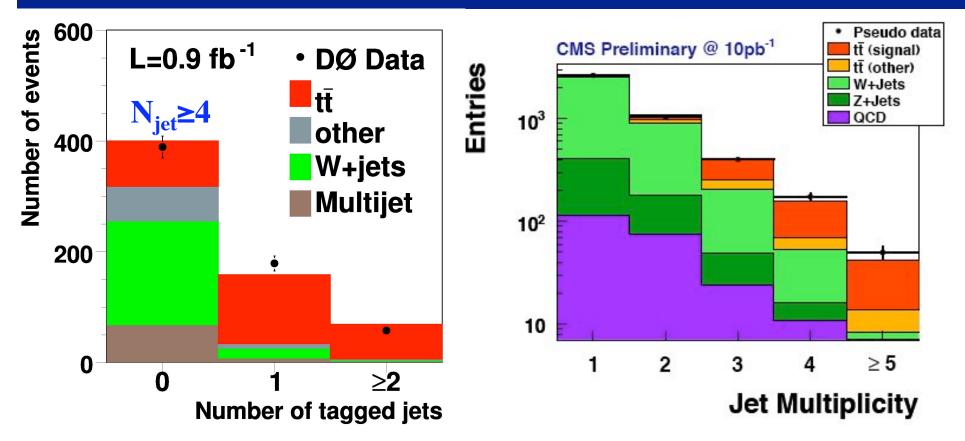
Z Boson Cross Section



- Trigger requires one electron with E_T>20 GeV
 - Criteria at L1, L2 and L3/EventFilter
- You select two electrons in the analysis
 - With certain quality criteria
 - With an isolation requirement
 - With E_T>25 GeV and |eta|<2.5</p>


66<M(II)<116 GeV

Top Quark Cross Section

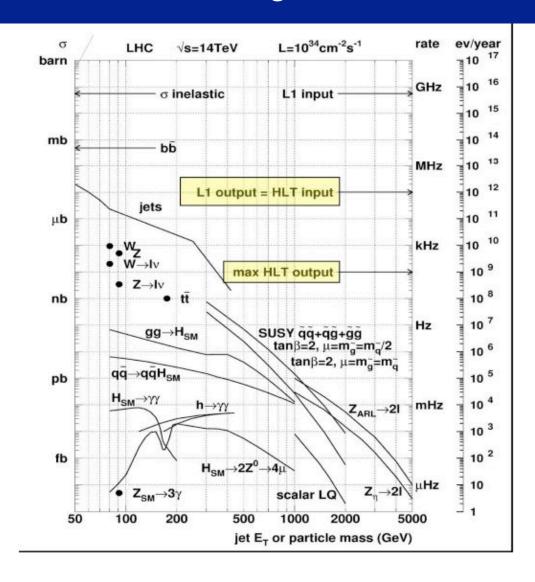

SM: tt pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


- Trigger on electron/muon
 - Like for Z's
- Analysis cuts:
 - Electron/muon p_T>25 GeV
 - Missing E_T>25 GeV
 - 3 or 4 jets with E_T>20-40 GeV

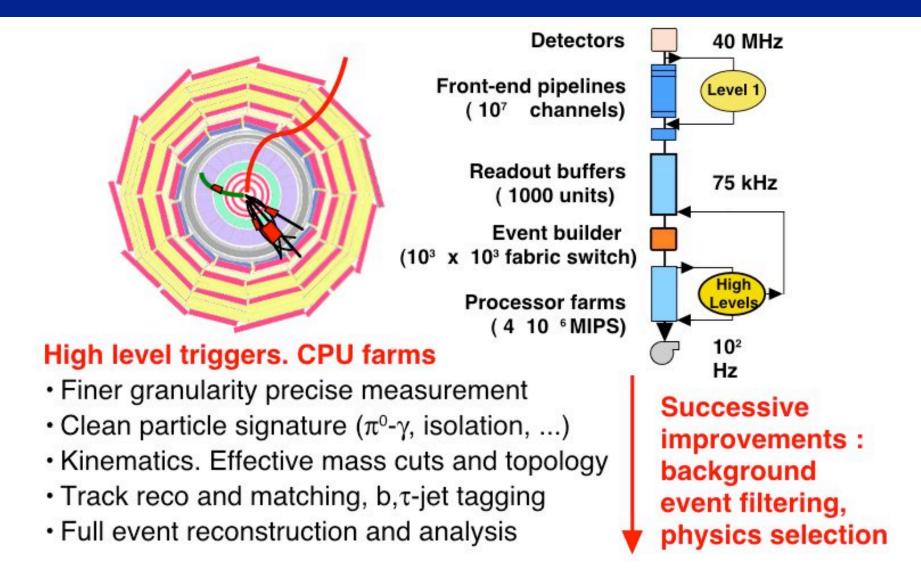
Finding the Top Quark

Tevatron


- Top is overwhelmed by backgrounds:
- Top fraction is only 10% (≥3 jets) or 40% (≥4 jets)
- Use b-jets to purify sample => purity 50% (≥3 jets) or 80% (≥4 jets)

LHC

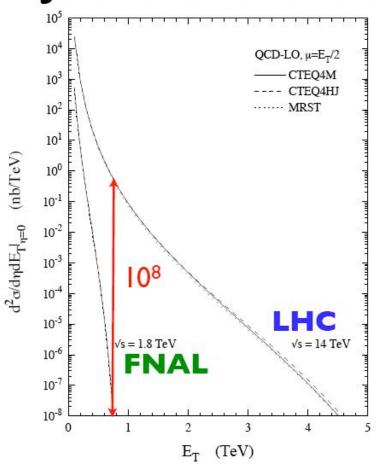
Purity ~70% w/o b-tagging (90% w b-tagging)


Trigger

Trigger Rate vs Physics Cross Section

Acceptable Trigger Rate << many physics cross sections

Example: CMS trigger


NB: Similar output rate at the Tevatron

Tevatron versus LHC Cross Sections

Cross Sections of Physics Processes (pb)

	Tevatron	LHC	Ratio
W [±] (80 GeV)	2600	20000	10
tt (2x172 GeV)	7	800	100
gg→H (120 GeV)	1	40	40
$\widetilde{\chi}^{+}_{1}\widetilde{\chi}^{2}_{0}$ (2x150 GeV)	0.1	1	10
विवे (2x400 GeV)	0.05	60	1000
gg (2x400 GeV)	0.005	100	20000
Z' (1 TeV)	0.1	30	300

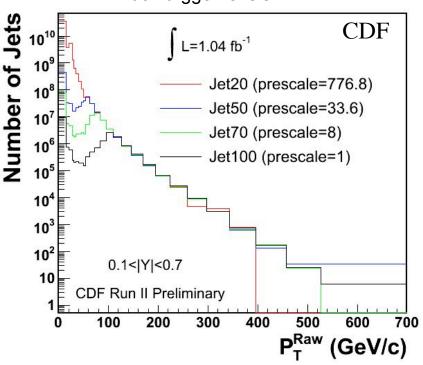
Jet Cross Section

- Amazing increase for strongly interacting heavy particles!
- LHC has to trigger >10 times more selectively than Tevatron

Are your events being triggered?

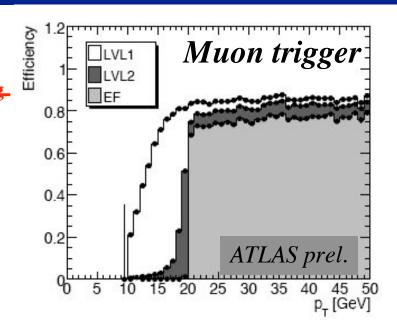
- Typically yes, if
 - events contain high p_⊤ isolated leptons
 - e.g. top, Z, W
 - events contain very high p_T jets or very high missing E_T
 - e.g. SUSY
 - ...
- Possibly no, if
 - events contain only low-momentum objects
 - E.g. two 20 GeV b-jets
 - Still triggered at Tevatron but not at LHC
 -
- This is the first thing you need to find out when planning an analysis
 - If not then you want to design a trigger if possible

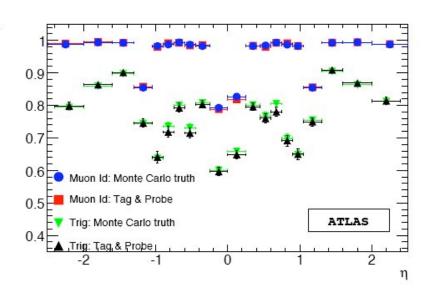
Examples for Unprescaled Triggers

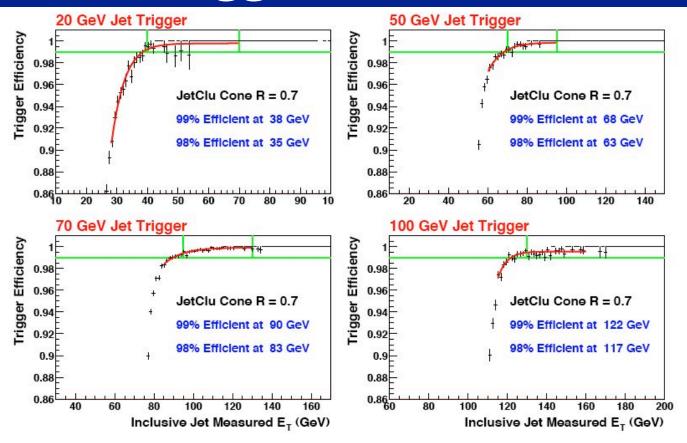

	ATLAS ^(*) (L=2x10 ³³ cm ⁻² s ⁻¹)	CDF (L=3x10 ³² cm ⁻² s ⁻¹)
MET	> 70 GeV	> 40 GeV
Jet	> 370 GeV	> 100 GeV
Photon (iso)	> 55 GeV	> 25 GeV
Muon	iso + p _T > 20 GeV	> 20 GeV
Electron	Iso + E _T > 22 GeV	> 20 GeV
incl. dimuon	> 10 GeV	> 4 GeV

- Increasing luminosity leads to
 - Tighter cuts, smarter algorithms, prescales
 - Important to pay attention to this for your analysis!

Typical Triggers and their Usage


- Unprescaled triggers for primary physics goals, e.g.
 - Inclusive electrons, muons p_T>20 GeV:
 - W, Z, top, WH, single top, SUSY, Z',W'
 - Lepton+tau, p_T>8-25 GeV:
 - MSSM Higgs, SUSY, Z
 - Also have tau+MET: W->taunu
 - Jets, E_T>100-400 GeV
 - Jet cross section, Monojet search
 - Lepton and b-jet fake rates
 - Photons, E_T>25 GeV:
 - Photon cross sections, Jet energy scale
 - Searches (GMSB SUSY), ED's
 - Missing E_T>45-100 GeV
 - SUSY


- Prescale triggers because:
 - Not possible to keep at highest luminosity
 - But needed for monitoring
 - Prescales depend often on Luminosity
- Examples:
 - Jets at E_T>20, 50, 70 GeV
 - Inclusive leptons >8 GeV
 - Backup triggers for any threshold, e.g. Met, jet ET, etc...
 - At all trigger levels


Trigger Efficiency for e's and µ's

- Can be measured using Z's with tag & probe method
 - Statistically limited
- Can also use trigger with more loose cuts to check trigger with tight cuts to map out
 - Energy dependence
 - turn-on curve decides on where you put the cut
 - Angular dependence
 - Map out uninstrumented / inefficien parts of the detectors, e.g. dead chambers
 - Run dependence
 - Temporarily masked channels (e.g. due to noise)

Jet Trigger Efficiencies

- Bootstrapping method:
 - E.g. use MinBias to measure Jet-20, use Jet-20 to measure Jet-50 efficiency ... etc.
- Rule of thumb: choose analysis cut where ε>90-95%
 - Difficult to understand the exact turnon

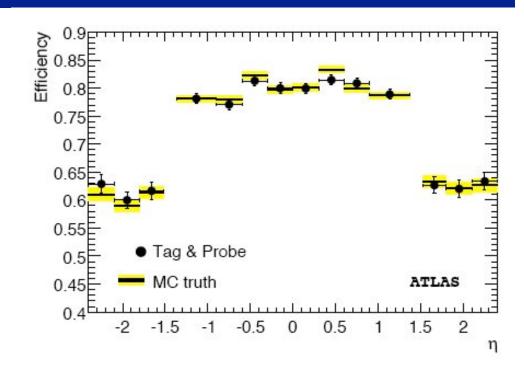
Efficiencies

Two Examples

- Electrons
- B-jets

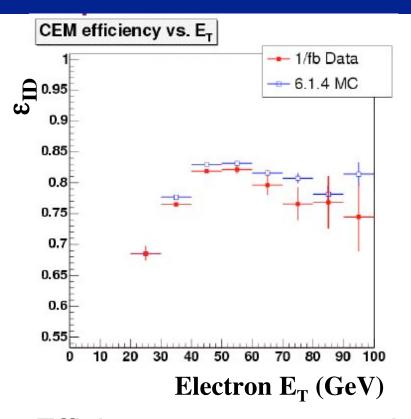
Electron Identification

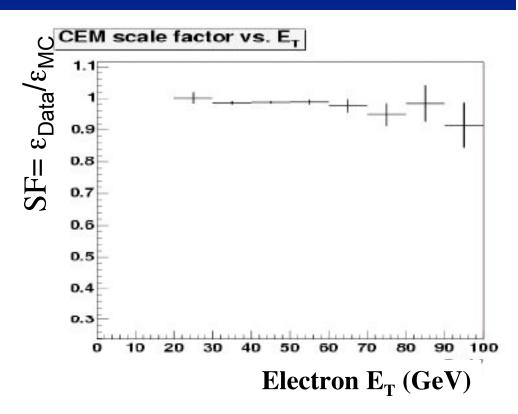
Desire:


- High efficiency for (isolated) electrons
- Low misidentification of jets

Cuts:

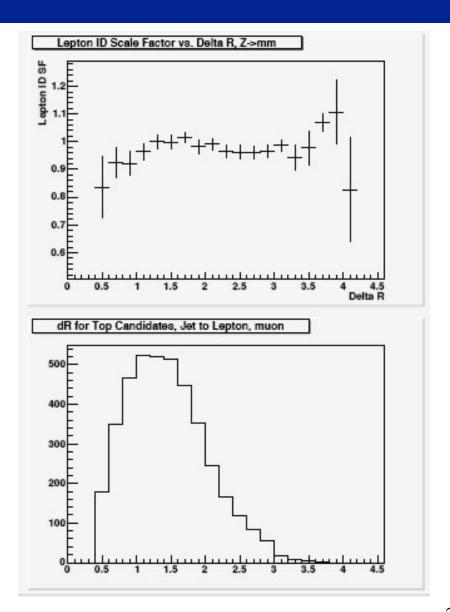
- Shower shape
- Low hadronic energy
- Track requirement
- Isolation

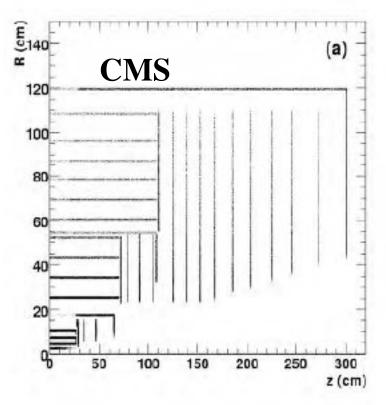

Performance:

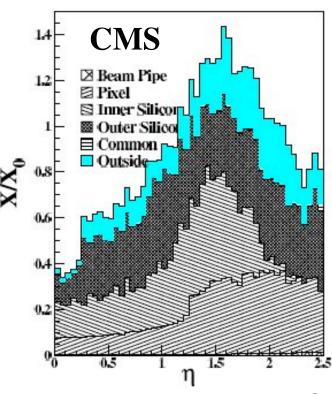

- Efficiency measured from Z's using "tag and probe" method
 - See lecture by U. Bassler
- Usually measure "scale factor":
 - SF= $\varepsilon_{\text{Data}}/\varepsilon_{\text{MC}}$ (=1 for perfect MC)
 - Easily applied to MC

	CDF	ATLAS
Loose cuts	85%	88%
Tight cuts	60-80%	~65%

Electron ID "Scale Factor"

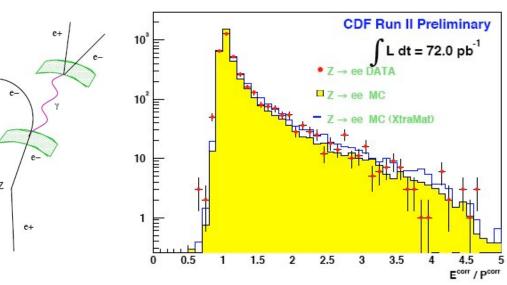


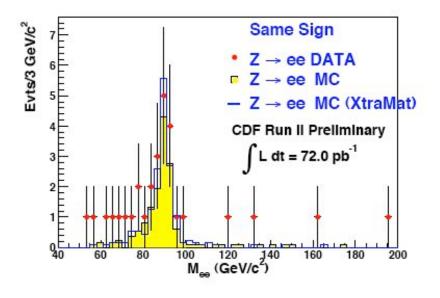

- Efficiency can generally depend on lots of variables
 - Mostly the Monte Carlo knows about dependence
- Determine "Scale Factor" = $\varepsilon_{Data}/\varepsilon_{MC}$
 - Apply this to MC
 - Residual dependence on quantities must be checked though


Beware of Environment

- Efficiency of e.g. isolation cut depends on environment
 - Number of jets in the event
- Check for dependence on distance to closest jet

Material in Tracker

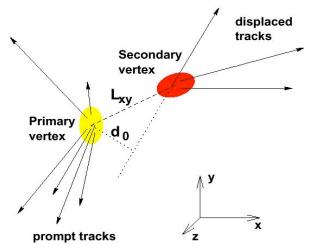


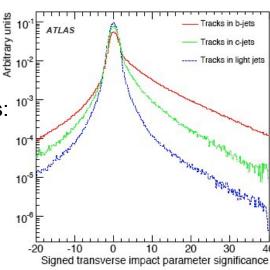


- Silicon detectors at hadron colliders constitute significant amounts of material, e.g. for R<0.4m
 - CDF: ~20% X₀
 - ATLAS: ~20-90% X₀
 - CMS: ~20-80%

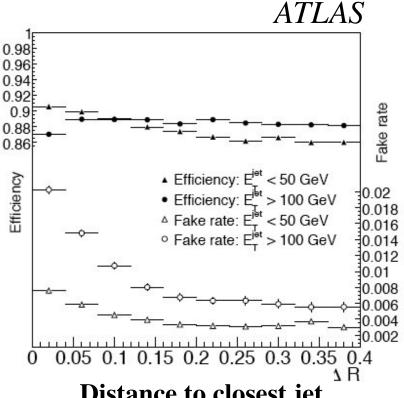
Effects of Material on Analysis

- Causes difficulties for electron/photon identification:
 - Bremsstrahlung
 - Photon conversions
- Constrained with data:
 - Photon conversions
 - E/p distribution
 - Number of e[±]e[±] events



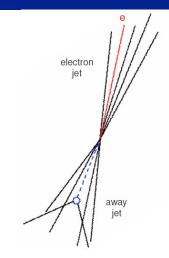


Finding the b-jets

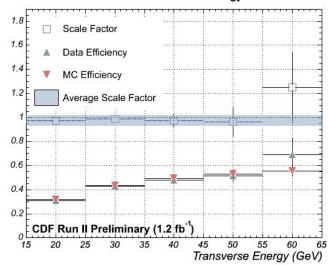

- Exploit large lifetime of the b-hadron
 - B-hadron flies before it decays: d=cτ
 - Lifetime τ =1.5 ps⁻¹
 - $d=c\tau = 460 \mu m$
 - Can be resolved with silicon detector resolution
- Procedure "Secondary Vertex":
 - reconstruct primary vertex:
 - resolution ~ 30 μm
 - Search tracks inconsistent with prim. vtx (large d₀):
 - · Candidates for secondary vertex
 - See whether those intersect at one point
 - Require distance of secondary from primary vertex
 - Form L_{xy}: transverse decay distance projected onto jet axis:
 - L_{xv}>0: b-tag along the jet direction => real b-tag or mistag
 - L_{xv}<0: b-tag opposite to jet direction => mistag!
 - Significance: e.g. δL_{xy} / L_{xy} >7.5
- More sophisticated techniques exist
 - Neural networks, likelihoods, etc.

B-tagging relies on tracking in Jets

- Finding "soft" tracks inside jets is tough!
 - Difficult pattern recognition in dense environment
- Trade-off of efficiency and fake rate
- Difficult to measure in data
 - Only method I know is "track embedding"
 - Embed a MC track into data and check if one can find it

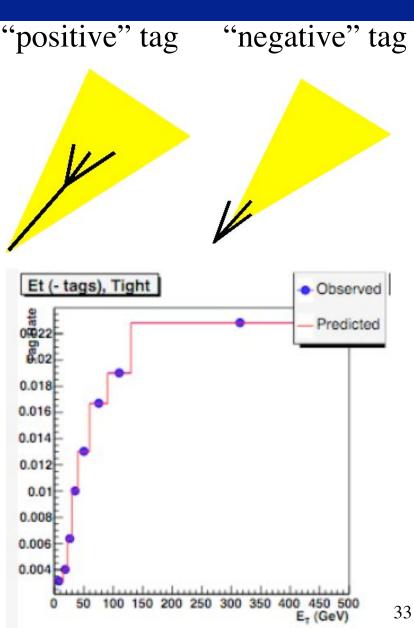


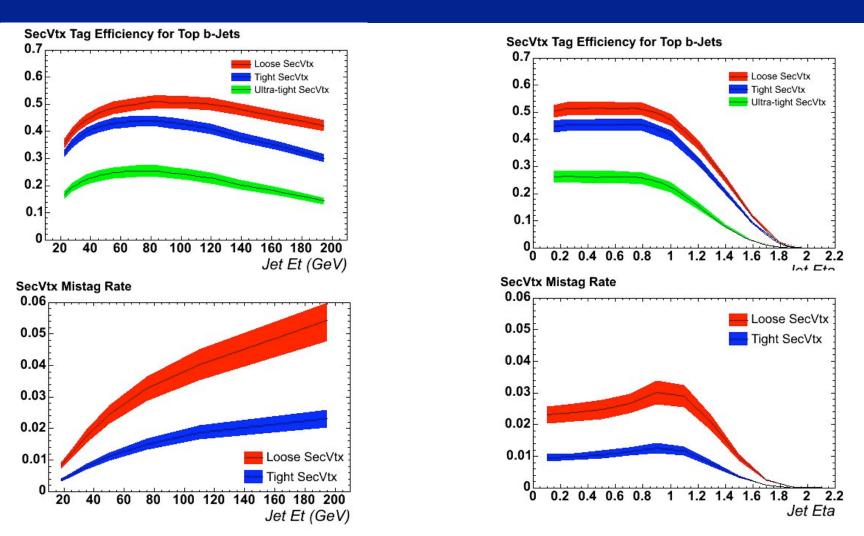
Distance to closest jet


Characterize the B-tagger: Efficiency

- Efficiency of tagging a true b-jet
 - Use Data sample enriched in b-jets
 - Select jets with electron or muons
 - From semi-leptonic b-decay
 - And b-jet on the opposite side
 - Measure efficiency in data and MC
 - Determine Scale Factor

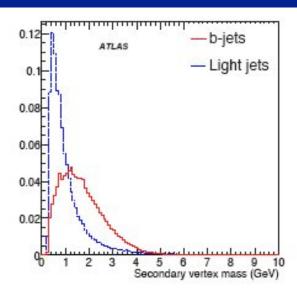
- Can also measure it in top events
 - Particularly at LHC ("top factory")

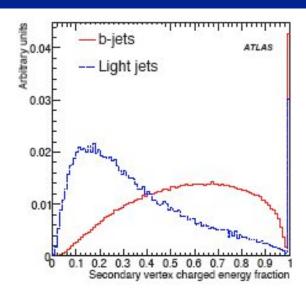


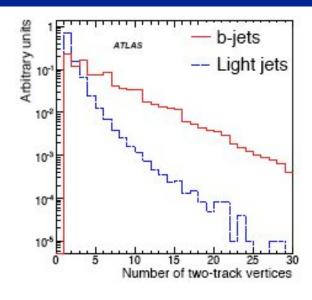


Characterize the B-tagger: Mistag rate

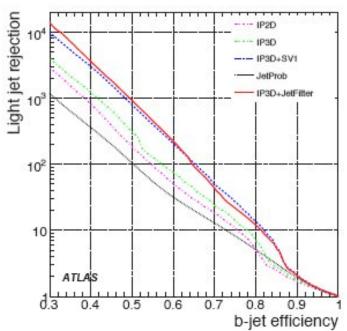
- Mistag rate measurement:
 - Probability of light quarks to be misidentified
 - Use "negative" tags: L_{xv}<0</p>
 - Can only arise due to misreconstruction
 - Need to correct to positive L_{xv}
 - Material interactions, conversions etc ...
- Determine rate as function of all sorts of variables
 - Apply this to data jets to obtain background

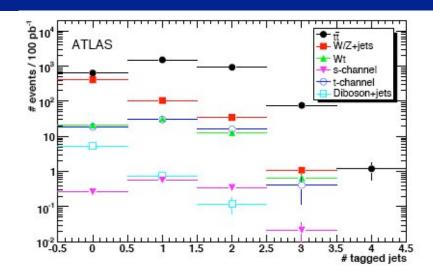


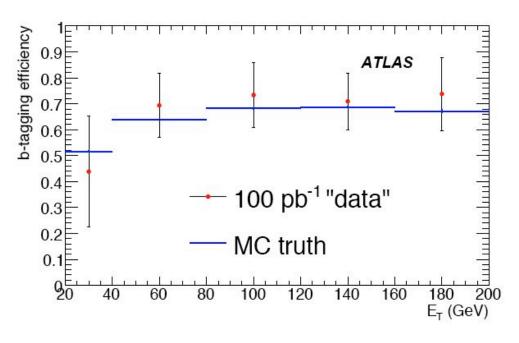

Final Performance



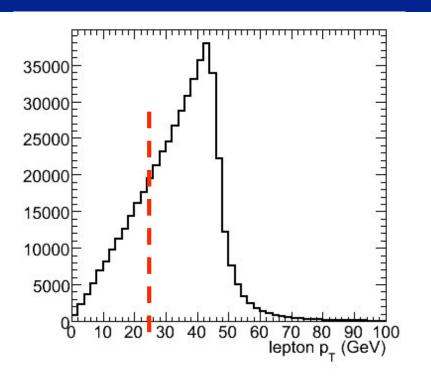
- Choose your operating point depending on analysis
 - Acceptance gain vs background rejection

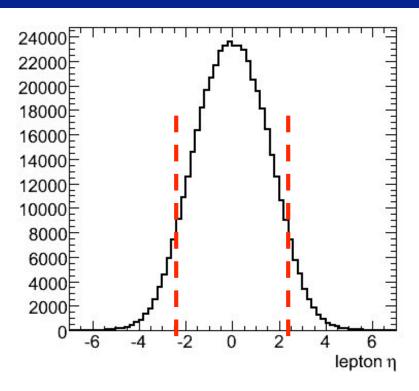

Improving B-tagging



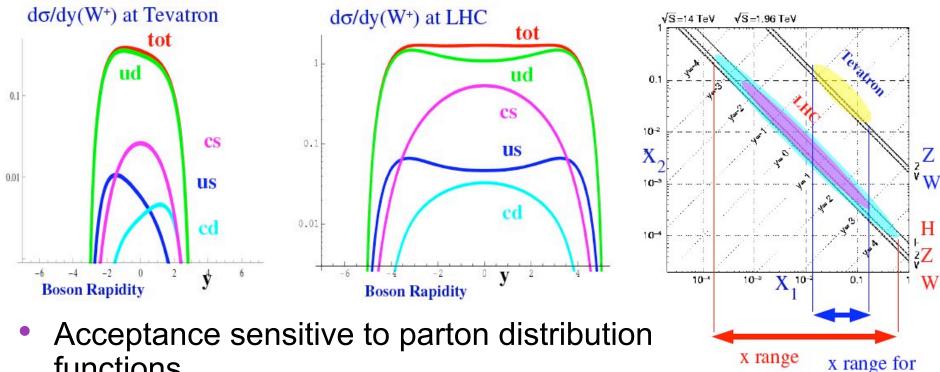

- Use more variables to achieve higher efficiency / higher purity
 - Build likelihood or Neural Network to combine the information
- E.g. for 50% efficiency
 - Mistag rate 0.1%

Measure b-tag Efficiency in top


- At LHC high purity of top events
 - Ntop(0-tag) $\propto (1-\varepsilon_b)^2$
 - Ntop(1-tag) $\propto 2\varepsilon_b(1-\varepsilon_b)$
 - Ntop(2-tag) ∝ ε_b²
- => Solve for $\varepsilon_{\rm b}$
- Backgrounds are complicating this simple picture
 - But it is doable!



Acceptance of kinematic cuts

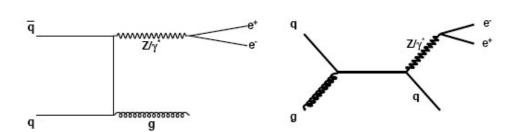

Acceptance of Kinematic Cuts: Z's

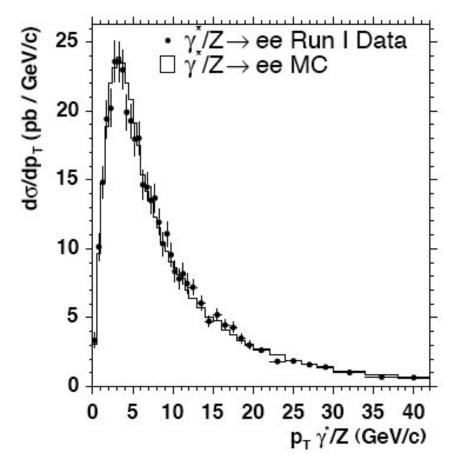
- Some events are kinematically outside your measurement range
- E.g. at Tevatron: 63% of the events fail either p_T or η cut
 - Need to understand how certain these 63% are
 - Best to make acceptance as large as possible
 - Results in smaller uncertainties on extrapolation

Parton Distribution Functions

- functions
 - At LHC charm quark density plays significant role but not well constrained
 - Typical uncertainties on charm pdf: ~10%
- Can result in relatively large systematic uncertainties

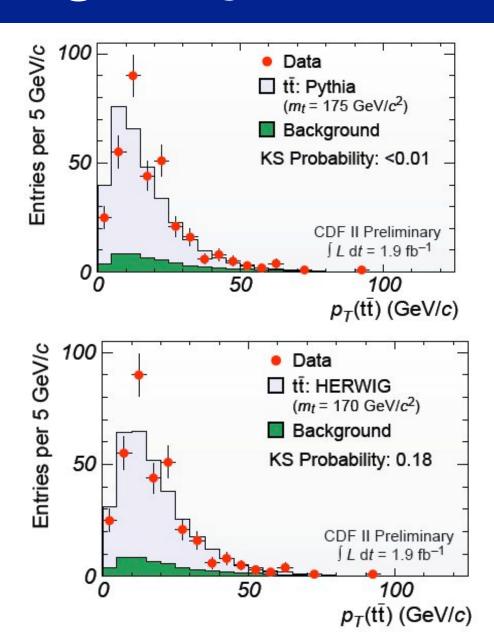
for LHC


Tevatron

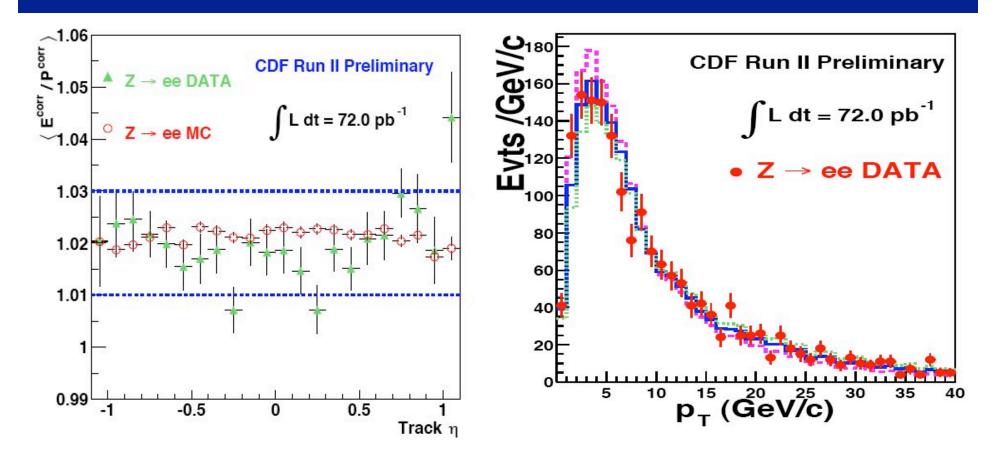

QCD Modeling of Process

- Kinematics affected by p_T of Z boson
 - Determined by soft and hard QCD radiation
 - tune MC to describe data
- Limitations of Leading
 Order Monte Carlo
 - Compare to NNLO calculation

CDF TABLE XII: Central acceptance values for our candidate samples based on $d\sigma/dy$ distributions obtained from both NNLO and PYTHIA simulation.


Acceptance	NNLO Calc.	PYTHIA	Difference (%)
$AW_{\rightarrow \mu \nu}$	0.1970	0.1967	+0.15
$A_{W \to e \nu}$	0.2397	0.2395	+0.08
$A_{Z \rightarrow \mu\mu}$	0.1392	0.1387	+0.36
$A_{Z \to ee}$	0.3182	0.3185	-0.09
$A_{Z \to \mu\mu}/A_{W \to \mu\nu}$	0.7066	0.7054	+0.17
$A_{Z \to ee}/A_{W \to e\nu}$	1.3272	1.3299	-0.20

MC Modeling of top


- Use different MC generators
 - Pythia
 - Herwig
 - Alpgen
 - MC @ NLO
 - **...**
- Different tunes
 - Underlying event
 - Initial/final state QCD radiation
 - **...**
- Make many plots
 - Check if data are modelled well

Systematic uncertainties

- This will likely be >90% of the work
- Systematic errors cover our lack of knowledge
 - need to be determined on every aspect of measurement by varying assumptions within sensible reasoning
 - Thus there is no "correct way":
 - But there are good ways and bad ways
 - You will need to develop a feeling and discuss with colleagues / conveners / theorists
 - There is a lot of room for creativity here!
- What's better? Overestimate or underestimate
 - Find New Physics:
 - it's fine to be generous with the systematics
 - You want to be really sure you found new physics and not that "Pythia doesn't work"
 - Precision measurement
 - Need to make best effort to neither overestimate nor underestimate!

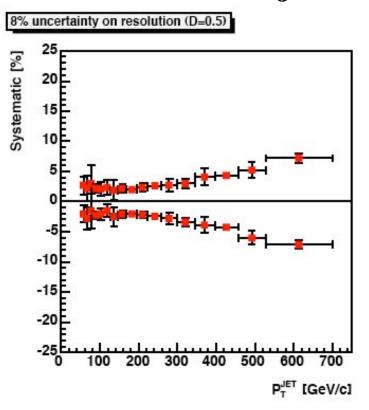
Examples for Systematic Errors

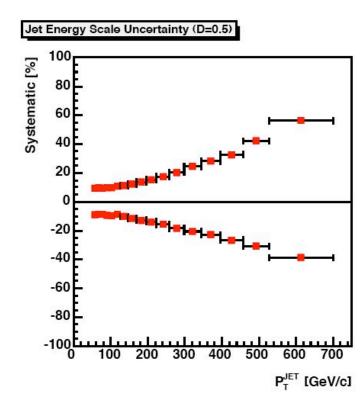
- Mostly driven by comparison of data and MC
 - Systematic uncertainty determined by (dis)agreement and statistical uncertainties on data

Systematic Uncertainties: Z and top

Z cross section (not all systematics)

source	variation	$\Delta \mathbf{A}_Z$	$\Delta \mathbf{A}_Z/\mathbf{A}_Z$
$E_T^{\rm e}$ scale	1% variation	0.03%	0.3%
$E_T^{\rm e}$ resolution	2% extra smearing	0.02%	0.2%
$p_T^{\rm e}$ scale	1% variation	0.01%	0.1%
p_T modelling		0.01%	0.1%
Material	$5.5 \% X_0$	0.54%	4.7%
PDFs	reweighting of y	0.34%	2.9%
overall		0.64%	5.5%


top cross section


Systematic	Inclusive (Tight)	Double (Loose)	
Lepton ID	1.8		
ISR	0.5	0.2	
FSR	0.6	0.6	
PDFs	0.9		
Pythia vs. Herwig	2.2	1.1	
Luminosity	6.2		
JES	6.1	4.1	
b-Tagging	5.8	12.1	
c-Tagging	1.1	2.1	
l-Tagging	0.3	0.7	
Non-W	1.7	1.3	
$W+{\rm HF}$ Fractions	3.3	2.0	
Mistag Matrix	1.0	0.3	
Total	11.5	14.8	

 Relative importance and evaluation methods of systematic uncertainties are very, very analysis dependent

Systematic Uncertainties: Jets

Jet cross section

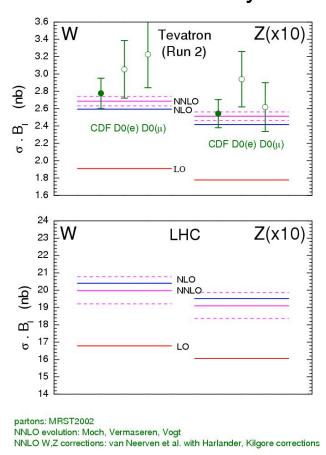
- For Jet Cross Section the Jet Energy Scale (JES) uncertainty is dominant systematic error
 - 3% uncertainty on JES results in up to 60% uncertainty on cross section

Final Result: Z cross section

 Now we have everything to calculate the final cross section

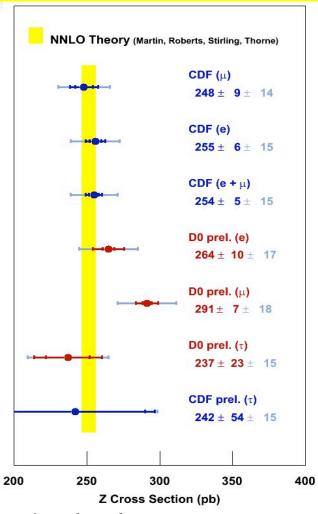
TABLE XXXVII: Summary of the input parameter

TABLE XXXVII: Summary of the input parameters to the $\gamma^*/Z \rightarrow \ell\ell$ cross section calculations for the electron and muon candidate samples.


$$\sigma_{\gamma^*/Z} \cdot Br(\gamma^*/Z \to ee) = 255.8 \pm 3.9(stat.)$$

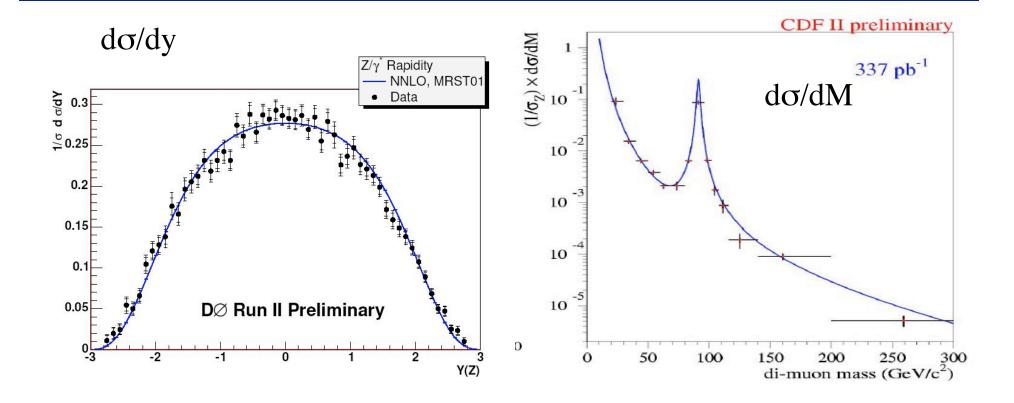
 $\pm \frac{5.5}{5.4}(syst.)$
 $\pm 15.3(lum.) \text{ pb}$

Comparison to Theory


Experimental uncertainty: ~2%

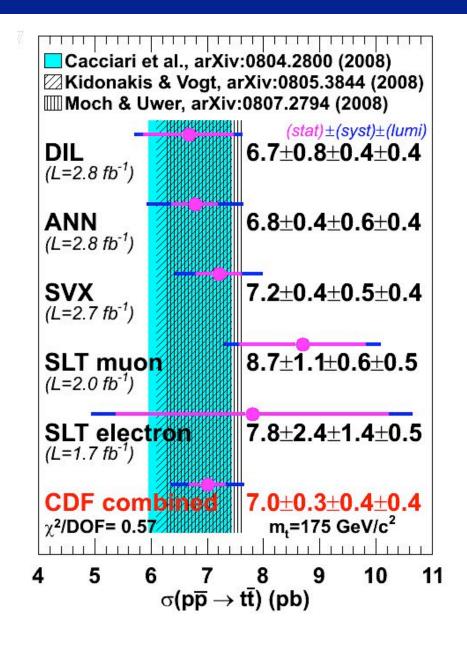
Luminosity uncertainty: ~6%

Theoretical uncertainty: ~2%



σ_{Th,NNLO}=251.3±5.0pb
(Martin, Roberts, Stirling, Thorne)

- Can use these processes to normalize luminosity absolutely
 - •However, theory uncertainty larger at LHC and theorists don't agree (yet)


More Differential $\sigma(Z)$ Measurements

Differential measurements in principle very similar

But now need to understand all efficiencies as function of y or mass

Final Results: Top Cross Section

Tevatron

- Measured using many different techniques
- Good agreement
 - between all measurements
 - between data and theory
- Precision: ~9%

LHC:

- Cross section ~100 times larger
- Measurement will be one of the first milestones (already with 10 pb⁻¹)
 - Test prediction
 - demonstrate good understanding of detector
- Expected precision
 - ~4% with 100 pb⁻¹

Conclusions of 1st Lecture

- Cross section measurements require
 - Selection cuts
 - Optimized to have large acceptance, low backgrounds and small systematic uncertainties
 - Luminosity measurement
 - Several methods of varying precision
 - Trigger
 - Complex and critical: what we don't trigger you cannot analyze!
 - Acceptance/efficiency has many subcomponents
 - Estimate of systematic uncertainties associated with each
 - Dependence on theory assumptions and detector simulation particularly critical
 - Minimize extrapolations to unmeasured phase space
 - Background estimate
 - See final lecture
- Systematic uncertainties are really a lot of work