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Outline
• Convolutional neural networks (CNNs) are a type of 

deep, feed-forward neural networks that have been 
successfully applied to a wide range of problems 

• Discuss the ways MicroBooNE 
- a LArTPC detector -  
has been exploring 
the use of CNNs 

• Three applications 
• Classification 
• Object detection 
• Semantic Segmentation



MICROBOONE GOALS

▸MicroBooNE,  a 
LArTPC detector 
filled with 170 tons 
of LAr 

▸ Looking for numu 
to nue oscillations 

▸Measure neutrino 
and argon cross 
sections 

▸ Perform LArTPC 
R&D

3

The detector  
during  
construction
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MICROBOONE

▸ MicroBooNE 
located here at 
FNAL 

▸ Sits 470 m from 
the start of the 
Booster 
Neutrino Beam 
— produces 
mostly muon 
neutrinos

Proton Path
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MICROBOONE EVENT

▸ Example image 

▸ Lots of detail on location and 
charge deposited 

▸ Info to infer particle types and 
ultimately neutrino properties
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First neutrino events


55 cm
Run 3469 Event 53223, October 21st, 2015 

(collection plane view)


▸ Example neutrino event from the beam 

▸ Lots of detail on location and amount 
of charge created in detector



First neutrino events
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First neutrino events


55 cm
Run 3469 Event 53223, October 21st, 2015 

(collection plane view)


▸ Detail allows us to parse, or 
reconstruct, these images 

▸ Tracks tell us about the neutrino

RECONSTRUCTION 6



▸ Full event view 

▸ Must pick out neutrino 
from cosmic muon 
backgrounds 

▸ Many images will not have 
a neutrino 

▸ Too many images to sort 
through by hand 

▸ Need to develop computer 
algorithms to find 
neutrinos

CHALLENGES 7



▸ To analyze an image, e.g. 
recognize as cat, 
decompose an object into 
a collection of small 
features 

▸ Features composed of 
different patterns, lines 
and colors 

▸ How to find the features 
and put them together?

IMAGE ANALYSIS 8



CONVOLUTIONAL NEURAL NETWORKS 9

▸Applying  
convolutional neural nets 
(CNN) 

▸ Very adept at image analysis 

▸ Primary advantages: 
scalable and generalizable 
technique 

▸ Successfully applied to many 
different types of problems

Face detection

Video analysis for self-driving cars

Defeating humans at Go



CONVOLUTIONAL NEURAL NETWORKS 10

input feature map
hidden  
layers

~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network

neuron

▸ CNNs differ from “traditional” neural nets in their 
structure 
▸ CNN “neuron” looks for local, translation-invariant 

patterns among inputs



CONVOLUTIONAL FILTER
▸ Core operation in a CNN is the convolutional filter — 

identifies the location of patterns in an image 
▸ Here regions of light and dark are where the pattern 

(or its inverse) matched well within the image

11



CONVOLUTIONAL FILTER

▸ one neuron produces one feature map 
▸ operation takes as input an image and outputs an image

12



CNN NETWORKS 13

17

Introduction to CNNs

DL µB NPGenty

Image Fully Connected
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use many layers to assemble patterns into complex image 
features

conv. layer

conv. layer
conv. layer

standard neural net

each feature map produced by one neuron

down sampled 
feature maps



CONVOLUTIONAL NETWORKS

▸ Consider the task of recognizing 
faces 

▸ Begin with image pixels (layer 1) 
▸ Start by applying convolutions of 

simple patterns (layer 2) 
▸ Find groups of patterns by 

applying convolution on feature 
maps (layer 3) 

▸ Repeat 
▸ Eventually patterns of patterns 

can be identified as faces (layer 4)

14



CONVOLUTIONAL NETWORKS

▸ CNNs learn these 
patterns (or 
convolutional filters) 
by themselves 

▸ That’s why CNNs are 
effective for many 
different tasks

15



CNNS IN MICROBOONE (AND LARTPCS)

▸ Explored several CNN algorithms that perform tasks 
directly applicable to our problem  

▸ Image classification 

▸ Object detection 

▸ Pixel labeling

16

⌫µ⌫µ ⌫µ

⌫µ ⌫µ
⌫µ ⌫e

Locate 
Neutrino Interaction  
and classify reaction

Pixel Labeling 
+ 

Particle ID

Muon

Proton

Detect presence of  
neutrino in whole event

⌫µ + n ! µ+ p



PROOF OF PRINCIPLE STUDY 17

Electron Charged PionPhoton Muon

▸ Study with images from simulation 

▸ To start: can network tell these four particles apart? 

▸ Important particles in analyses

Figure 5. Example event display for 3D box projection images for each particle type on the col-
lection plane. From left top in clockwise direction, e�, �, µ�, proton, and ⇡�.

For the training images, the provided label is regarded as truth information. The network
outputs the predicted label with each element filled with numbers between 0 and 1 based
on how confident the network is that the image contains each class. This prediction is
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Proton



▸ Study with images from simulation 

▸ High-lighting electron ID: important for finding signal 
interactions in current/future LArTPCs

Figure 9. Particle classification probabilities by true particle type from the high-resolution, five-
class, single particle study. Both models struggle with electron and gamma separation as well as
muon and charge pion separation.

– 21 –

PROOF OF PRINCIPLE STUDY 18

⌫e + n ! e+ p



▸ Explored class of problems known as objet detection for 
LArTPCs 

▸ For surface near the detectors, could be used to locate 
regions of interest in the detector

NEUTRINO INTERACTION DETECTION 19

Note: had use reduce 
resolution image for network

⌫µ + n ! µ+ p

⌫µ + n ! µ+ p

⌫µ + n ! µ+ p



▸ Key element in faster-
RCNN is the Region 
Proposal Network 

▸ Takes image features 
and determines if a 
given location contains 
an “object” 

▸ Top regions with 
objects are passed to 
next stage, a typical 
classifier 

20RESULT: NEUTRINO DETECTION



▸ Network output are 
classified regions of 
the image

21FASTER R-CNN
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Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 10

4 parameters (512 ⇥ (4 + 2) ⇥ 9

for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 10

6 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function

For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with



▸ Trained a network to place a bounding box around a 
neutrino interaction within a whole event view

22
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RESULT: NEUTRINO DETECTION



▸ Distribution of scores for regions overlapping with 
neutrinos (blue) versus background (red)

23RESULT: NEUTRINO DETECTION



▸ This task asks the network to label the individual pixels as 
belong to some class

24SEMANTIC SEGMENTATION

FCN-8: Fully-Convolutional-Network (FCN)

Image LabelFCN-8



25SEMANTIC SEGMENTATION
How is it different from Image Classification?

Cartoon of Image Classification

25

…

Encode

class vector

input image

▸ Convolution layers find collection of 
complex features 

▸ Features found combined to determine 
most likely objects in whole images

down sampled 
feature maps



26SEMANTIC SEGMENTATION
How is it different from Image Classification?

Cartoon of Image Classification

26

Encode

input image

▸ Individual feature maps (produced 
by a neuron in a layer) contain 
spatial information 

▸ However, down-sampled 

▸ For semantic segmentation, we 
want to use this information

cartoon of 
feature map of 
(horse-related 

features)

down sampled 
feature maps



27SEMANTIC SEGMENTATION
How is it different from Image Classification?

27
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28SEMANTIC SEGMENTATION
How is it different from Image Classification?

28
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29SEMANTIC SEGMENTATION IN LARTPC

Input Image “Label” Image 
(for training)

“Weight” Image 
(for training)Supervised Training (UB) 

• Assign pixel-wise “weight” to 
penalize mistakes 

• Weights inversely proportional to 
each “category” of pixel count 

• Useful for LArTPC images ( low 
information density) 

• U-Net (arXiv:1505.04597)



30SEMANTIC SEGMENTATION

νe
proton

e-

ADC Image Network Output

MicroBooNE 
Data CC1π0

MicroBooNE 
Data CC1π0

30

Promising early 
results in simulation 
and data samples 



▸ We have incorporated some of the techniques we’ve developed 
into an analysis looking the low energy excess 

▸ See L. Yates talk on Thursday 

▸ Incorporates PID and Semantic Segmentation 

▸ On-going effort to mitigate systematics from training on MC 
events 

▸ Testing on cosmic ray samples 

▸ Semantic aware-training 

▸ Feature-constrained training (to avoid leaning MC-specific 
features)

31NEXT STEPS



▸ MicroBooNE is helping to pioneer the use of CNNs for LArTPC data 

▸ Classification, object detection, semantic segmentation 

▸ Details in paper: JINST 12 (02) P02017 

▸ Also, working to understand how to bridge the MC-data divide 

▸ Incorporating techniques into physics analyses 

▸ See L. Yates Talk Thursday (Neutrino II afternoon, Comitium) 

▸ HEP-Friendly (i.e. ROOT) interfaces to Caffe and Tensorflow 

▸ LArCV: https://github.com/LArbys/LArCV 

▸ Caffe 1-fork: https://github.com/LArbys/caffe 

▸ Starting to think about LArSoft integration

32SUMMARY

https://github.com/LArbys/LArCV
https://github.com/LArbys/caffe


33THANK YOU

▸ Thanks for your attention 

▸ And thank you to the funding agencies for making this 
work possible



BACK-UPS

34



RESULTS OF PARTICLE CLASSIFICATION 35

Classified Particle Type

Image, Network e� [%] � [%] µ� [%] ⇡� [%] proton [%]

HiRes, AlexNet 73.6 ± 0.7 81.3 ± 0.6 84.8 ± 0.6 73.1 ± 0.7 87.2 ± 0.5

LoRes, AlexNet 64.1 ± 0.8 77.3 ± 0.7 75.2 ± 0.7 74.2 ± 0.7 85.8 ± 0.6

HiRes, GoogLeNet 77.8 ± 0.7 83.4 ± 0.6 89.7 ± 0.5 71.0 ± 0.7 91.2 ± 0.5

LoRes, GoogLeNet 74.0 ± 0.7 74.0 ± 0.7 84.1 ± 0.6 75.2 ± 0.7 84.6 ± 0.6

Table 2. Five particle classification performances. The very left column describes the image type
and network where HiRes refers to a standard 576 by 576 pixel image while LowRes refers to
a downsized image of 288 by 288 pixels. The five remaining columns denote the classification
performance per particle type. Quoted uncertainties are purely statistical and assume a binomial
distribution.

Classified Particle Type

Image, Network e� [%] � [%] µ� [%] ⇡� [%] proton [%]

HiRes, AlexNet � 23.0 e� 16.2 ⇡� 8.0 µ� 19.8 µ� 7.0

LoRes, AlexNet � 29.3 e� 17.6 ⇡� 11.7 µ� 16.5 µ� 7.9

HiRes, GoogLeNet � 19.9 e� 15.0 ⇡� 5.4 µ� 22.6 µ� 4.6

LoRes, GoogLeNet � 21.0 e� 21.3 ⇡� 9.4 µ� 19.3 µ� 9.1

Table 3. The most frequently misidentified particle type for the five particle classification task.
Following table 2, the very left column describes the image type and network where HiRes refers
to a standard 576 by 576 pixel image while LowRes refers to a downsized image of 288 by 288
pixels. The five remaining columns denote the classification performance per particle type. Each
table element denotes the most frequently mistaken particle type and its mis-identification rate.

– 20 –



36LONG-TERM VISION FOR DL IN LARTPCS
▸ Current: 

▸ replace/augment traditional algorithm tasks: PID, clustering, 2D->3D reconstruction 

▸ limit to tasks one can check with some kind of cosmic ray sample on DATA: MicroBooNE, 
protodune will have data 

▸ Systematics aware-training 

▸ employ in analyses 

▸ Near-term: 

▸ SBND will have lots of neutrino interaction data 

▸ Train for tasks targeting neutrino interactions 

▸ Unsupervised techniques where Networks cluster data itself 

▸ End-goal: 

▸ Recurrent Neural Network systems that perform interaction hypothesis search 

▸ Fast Hypothesis generation through Generative networks (e.g. GAN) 

▸ Reinforcement learning to teach network to solve interaction using self-taught decision tree for 
calling reco. algorithms 

▸ Output components of decision process to humans



37SEMANTIC SEGMENTATION
How is it different from Image Classification?
Example CNN for Image Classification

Example CNN for Semantic Segmentation
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• Classification network reduces 
the whole image into final 
“class” 1D aray

• SSNet, after extracting class 
feature tensor, interpolates 
back into original image size
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Feature tensor is interpolated back into original image 
by learnable interpolation operations37



38SEMANTIC SEGMENTATION
uBoone U-ResNet   

(or UBURN) Architecture
▸ U-Net gets it name from its graph diagram: network composed of a collapsing and 

expanding half, plus connections between low level and high-level feature maps2

copy and crop

input
image

tile

output 
segmentation 
map
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the di↵erent operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Collapsing Expanding

low-to-high level connections



39CLASSIFICATION

Figure 24. Neutrino ID Network. The data input layer is at the bottom and takes three wire
plane views separately. The process flows from the bottom to the top where the final decision of a
neutrino or cosmic event is made.

6.2 Sample Preparation and Training

The network is asked to classify images into two classes: a cosmic-only image and a
cosmic+neutrino interaction image. For the cosmic-only images, we use o↵-beam, PMT-
triggered events. When producing cosmic+neutrino interaction images, we overlay simu-
lated neutrino interactions with o↵-beam events. Just as in demonstration 2, the neutrino
interaction is generated using the BNB flux [21] and genie interaction model. The neutrino
interaction time is made to fall uniformly within the expected beam time window.

When selecting simulated BNB neutrino interactions to overlay, we apply quality cuts
to (1) select events with an interaction vertex inside inside the TPC, (2) select events
with neutrino energy above 400 MeV, and (3) select ⌫µ charged-current (CC) events using
generator-level information. The second and third cuts are meant to ensure that the amount
of charge deposited by the neutrino interaction is sizable.

As discussed in the previous section, we are forced to down-sample the MicroBooNE
event images to a lower resolution in order to fit our network model within the limits of
the GPU memory. Unfortunately, as shown within demonstration 1, down-sizing has a

– 41 –

▸ Network used in paper 

▸ Uses ResNet modules 

▸ BatchNorm 

▸ DropOut 

▸ Convolution 
“stem” (purple and 
gold) where weights 
shared across 
application of 3 views



FEATURE MATCHING 40

Generative Adversarial Networks (GANs)

A GAN is a CNN that takes in a random vector and transforms it into an image. 
The image produced is then fed through a classifier CNN, which classifies the 
image as either real or fake.

The goal of a GAN is to produce images that the classifier thinks are real.

A GAN that uses feature mapping has a modified goal: to produce images that, 
when fed through the classifier, cause the neurons in the classifier network to 
activate in the same way as they would when viewing real images.

4

 http://arxiv.org/abs/1511.06434  arXiv:1606.03498

http://arxiv.org/abs/1511.06434


FEATURE MATCHING 41

Feature Matching in GANs

5

Random vector
Real

Standard GAN: GAN is rewarded when classifier network classifies 
the image as real.

Feature-matching GAN: GAN is rewarded when neurons in an 
intermediate layer of the classifier network activate in the same way as 
when viewing a real image.

Generator Image Classifier

Random vector

Generator Image Classifier
Real image activation

arXiv:1606.03498

arXiv:1511.06434



FEATURE MATCHING 42

7

Redesigned Network

Original Network Design

Data Layer:
1. Cosmic Data mixed with Cosmic 

Data + Neutrino Overlay (50/50)
2. Cosmic Data
3. Cosmic MC

Loss

Average 
Activation 
per neuron

Average 
Activation 
per neuron

Loss

Data Layer:
Cosmic Data mixed with Cosmic Data 
+ Neutrino Overlay (50/50)

LossConvolutions

Cosmic Data 
mixed with 
Cosmic Data + 
Neutrino Overlay

Cosmic Data

Cosmic MC



STABILITY TRAINING 43

WHAT IS STABILITY TRAINING?

• Small perturbations in images can cause large shifts in classification scores

• We modify our loss function with a “Stability Term”

• Run “original image” and “original image plus gaussian noise” and minimize 
difference in score

5

“Was classification correct?”

“Did perturbation change the 
score?”

https://arxiv.org/pdf/1
604.04326.pdf


