Data Analysis II

Beate Heinemann

UC Berkeley and Lawrence Berkeley National Laboratory

Hadron Collider Physics Summer School, Fermilab, August 2008

Outline

- Lecture I:
 - Measuring a cross section
 - focus on acceptance
- Lecture II:
 - Measuring a property of a known particle
- Lecture III:
 - Searching for a new particle
 - focus on backgrounds

Differential Cross Section

- Measure jet spectra differentially in E_T and η
- Cross section in bin i: $\sigma(i) = \frac{N_{obs}(i) N_{BG}(i)}{\int Ldt \ \epsilon(i)}$

Differential Cross Section: Unfolding

- "Unfolding" critical for jet cross sections
- Measure:
 - Cross section for calorimeter jets
- Want:
 - Cross section for hadron-jets
- Unfolding factor (bin by bin):

$$C_i = \frac{N_{JET\ i}^{HAD}}{N_{JET\ i}^{CAL}}$$

Then:

 But, unfolding factors depend on MC E_⊤ spectrum

Differential Cross Section: Unfolding

• Problem:

- Steeply falling spectrum causes migrations to go from low to high p_T
 - Measured spectrum "flatter" than true spectrum
- Size of migration depends on input spectrum
- Requires iterative procedure (bin-by-bin unfolding):
 - 1. Measure using spectrum from MC
 - 2. Fit measurement
 - Reweight MC to reflect data measurement => go back to 1.

Example for Bin-by-Bin Unfolding

- Correction to unfolding factors <10%
 - One iteration sufficient in this example
 - Starting spectrum was already quite close to data

Systematic Uncertainties: Jet Cross Section

- For Jet Cross Section the Jet Energy Scale (JES) uncertainty is dominant systematic error
 - 3% uncertainty on JES results in up to 60% uncertainty on cross section
 - 8% uncertainty on JE resolution causes <10% uncertainty on cross section

Jet Cross Section Result

- Cross section falls by 8 orders of magnitude in measured E_T range
- Data in good agreement with QCD prediction
 - Experimental and theoretical errors comparable

Measuring Properties of Particles

The W[±] Boson Mass

W Boson mass

- Real precision measurement:
 - LEP: M_w=80.367±0.033 GeV/c²
 - Precision: 0.04%
 - => Very challenging!
- Main measurement ingredients:
 - Lepton p_T
 - Hadronic recoil parallel to lepton: u_{||}
- Z→II superb calibration sample:
 - but statistically limited:
 - About a factor 10 less Z's than W's
 - Most systematic uncertainties are related to size of Z sample
 - Will scale with $1/\sqrt{N_Z}$ (=1/ \sqrt{L})

$$m_T = \sqrt{2p_T^l p_T (1 - \cos \Delta \phi)},$$

$$p_T \approx |p_T + u_{||}$$

$$m_T \approx 2p_T \sqrt{1 + u_{||}/p_T} \approx 2p_T + u_{||}$$

How to Extract the W Boson Mass

- Uses "Template Method":
 - Templates created from MC simulation for different mW
 - Fit to determine which template fits best
 - Minimal $\chi^2 \Rightarrow W$ mass!
- Transverse mass of lepton and Met

$$m_T = \sqrt{|p_T^{\ell}|^2 + |p_T^{\nu}|^2 - (\vec{p}_T^{\ell} + \vec{p}_T^{\nu})^2}$$

How to Extract the W Boson Mass

- Alternatively can fit to
 - Lepton p_T or missing E_T
- Sensitivity different to different systematics
 - Very powerful checks in this analysis:
 - Electrons vs muons
 - Z mass
 - m_T vs p_T vs ME_T fits
 - The redundancy is the strength of this difficult high precision analysis 13

Lepton Momentum Scale

- Momentum scale:
 - Cosmic ray data used for detailed cell-by-cell calibration of CDF drift chamber
 - E/p of e+ and e- used to make further small corrections to p measurement
 - Peak position of overall E/p used to set electron energy scale
 - Tail sensitive to passive material

14

Momentum/Energy Scale and Resolution

Systematic uncertainty on momentum scale: 0.04%

Hadronic Recoil Model

- Hadronic recoil modeling
 - Tune data based on Z's
 - Check on W's

Systematic Uncertainties

m_T Fit Uncertainties			
Source	$W \to \mu \nu$	$W \to e \nu$	Correlation
Tracker Momentum Scale	17	17	100%
Calorimeter Energy Scale	0	25	0%
Lepton Resolution	3	9	0%
Lepton Efficiency	1	3	0%
Lepton Tower Removal	5	8	100%
Recoil Scale	9	9	100%
Recoil Resolution	7	7	100%
Backgrounds	9	8	0%
PDFs	11	11	100%
W Boson p_T	3	3	100%
Photon Radiation	12	11	100%
Statistical	54	48	0%
Total	60	62	-

Limited by data statistics

Limited by data and theoretical understanding

TABLE IX: Uncertainties in units of MeV on the transverse mass fit for m_W in the $W \to \mu \nu$ and $W \to e \nu$ samples.

- Overall uncertainty 60 MeV for both analyses
 - Careful treatment of correlations between them
- Dominated by stat. error (50 MeV) vs syst. (33 MeV)

W Boson Mass

World average:

$$M_{w} = 80398 \pm 25 \text{ MeV}$$

Ultimate Run 2 precision:

~15 MeV

The Top Quark

Top Quark Cross Section

SM: tt pair production, $Br(t\rightarrow bW)=100\%$, $Br(W\rightarrow lv)=1/9=11\%$

```
dilepton (4/81) 2 leptons + 2 jets + missing E_T lepton+jets (24/81) 1 lepton + 4 jets + missing E_T fully hadronic (36/81) 6 jets
```


- Trigger on electron/muon
 - Like for Z's
- Analysis cuts:
 - Electron/muon p_T>25 GeV
 - Missing E_T>25 GeV
 - 3 or 4 jets with E_T>20-40 GeV

Top Mass Measurement: tt→(blv)(bqq)

- 4 jets, 1 lepton and missing E_T
 - Which jet belongs to what?
 - Combinatorics!
- B-tagging helps:
 - 2 b-tags =>2 combinations
 - 1 b-tag => 6 combinations
 - 0 b-tags =>12 combinations
- Two Strategies:
 - Template method:
 - Uses "best" combination
 - Chi2 fit requires m(t)=m(t)
 - Matrix Element method:
 - Uses all combinations
 - Assign probability depending on kinematic consistency with top

Top Mass Determination

- Inputs:
 - Jet 4-vectors
 - Lepton 4-vector
 - Remaining transverse energy, p_{T.UE}:

•
$$p_{T,v} = -(p_{T,I} + p_{T,UE} + \sum p_{T,jet})$$

- Constraints:
 - M(Iv)=M_W
 - M(qq)=M_W
 - M(t)=M(t)
- Unknown:
 - Neutrino p_z
- 1 unknown, 3 constraints:
 - Overconstrained
 - Can measure M(t) for each event: m_treco

Selecting correct combination 20-50% of the time

In-situ Measurement of JES

 Additionally, use W→jj mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty

2D fit of the invariant mass of the non-b-jets and the top mass:

JES∝ M(jj)- 80.4 GeV/c²

Measurement of JES scales directly with data statistics

Top Mass Templates

- Fit to those templates for
 - Top mass
 - Jet Energy Scale

Measurement of JES at LHC

- Large top samples
 - Clean W mass peak
- Allow measurement of JES as function of Jet Energy
- Can achieve 1% precision with 10 fb⁻¹

Template Analysis Results on m_{top}

- Using 344 lepton+jets and 144 dilepton candidate events in 1.9 fb⁻¹
- Using in-situ JES calibration results in factor four improvement on JES

$$m_{top} = 171.9 \pm 1.7 \text{ (stat.+JES)} \pm 1.0 = 171.6 \pm 2.0 \text{ GeV/c}^2$$

"Matrix Element Method"

- Construct probability density function as function of m_{top} for each event
- Multiply those probabilities of all events

$$P_{sig}(x; m_{top}, JES) = \underbrace{Acc(x)}_{\text{O}} \times \frac{1}{\sigma} \int d^{n} \underbrace{\sigma(y; m_{top})}_{\text{top}} \underline{dq_{1} dq_{2} f(q_{1}) f(q_{2})}_{\text{EV}} \underline{W(x, y; JES)}_{\text{CProbability to measure x when y was produced)}}$$

maximum Likelihood fit:

$$L(x_1, ..., x_n; m_{\text{top}}, JES, f_{\text{top}}) = \prod_{i=1} P_{\text{evt}}(x_i; m_{\text{top}}, JES, f_{\text{top}})$$

Check you get the right answer

- Run "Pseudo-Experiments" on Monte Carlo to see if you get out the mass that was put in
 - Pretend MC is data and run analysis on it N times
- Non-trivial cross check given the complexity of the method
 - If not: derive "calibration curve" from slope and offset

Matrix Element Top Mass Results

DØ: 2.2 fb⁻¹

$$m_{top} = 172.2 \pm 1.0 \text{ (stat)} \pm 1.4 \text{ (syst)} \text{ GeV}$$

CDF: 2.9 fb⁻¹

$$m_{top} = 172.2 \pm 1.0 \text{ (stat)} \pm 1.3 \text{ (syst)} \text{ GeV}$$

 $\pm 1.0\%$

±1.0%

Combining M_{top} Results

- Excellent results in each channel
 - Dilepton
 - Lepton+jets
 - All-hadronic
- Combine them to improve precision
 - Include Run-I results
 - Account for correlations
- Uncertainty: 1.2 GeV
 - Dominated by systematic uncertainties

Implications for Higgs Boson

m_H constrained in the Standard Model

Direct searches at LEP2: m_H>114.4 GeV @95%CL

LEPEWWG 07/08

 m_{H} [GeV] Indirect constraints: m_{H} < 160 GeV @95%GL

Measuring Properties of Supersymmetric Particles (in case they exist)

Spectacular SUSY Events (?)

- Long cascade decays via several SUSY particles
 - In classic models quite possible
 - Would be a wonderful experimental challenge!
 - But of course very possible also that it does not happen
- If Nature is like this:
 - Need to try to reconstruct masses of all those particles
- Main method:
 - Measure "edges"

Spectacular SUSY Events (?)

 Long cascade decays via several SUSY particles, e.g.

$$ilde{q}_{
m L}
ightarrow ilde{\chi}_{2}^{0} q (
ightarrow ilde{\ell}^{\pm} \ell^{\mp} q)
ightarrow ilde{\chi}_{1}^{0} \ell^{+} \ell^{-} q$$

- In classic models quite possible
 - Would be a wonderful experimental challenge!
- But of course very possible also that it does not happen
- If Nature is like this:
 - Need to try to reconstruct masses of all those particles
- Main method:
 - Measure "edges"

$$m_{\ell\ell}^{\rm edge} = m_{\tilde{\chi}^0_2} \sqrt{1 - \left(\frac{m_{\tilde{\ell}}}{m_{\tilde{\chi}^0_2}}\right)^2} \sqrt{1 - \left(\frac{m_{\tilde{\chi}^0_1}}{m_{\tilde{\ell}}}\right)^2} \; . \label{eq:medge}$$

Only for opposite sign same-flavor (OSDF) leptons

Dilepton Edge Fit

- Background from different flavors subtracted Σe+e+μ+μ-e+μ-μ+e-
 - Removes random SUSY backgrounds, top backgrounds,...
- Fit for dilepton edge
 - With many such edges one can maybe get a beginning of an understanding what is happening!
 - Different models look differently

$$m_{\ell\ell}^{\rm edge} = m_{\tilde\chi_2^0} \sqrt{1 - \left(\frac{m_{\tilde\ell}}{m_{\tilde\chi_2^0}}\right)^2 \sqrt{1 - \left(\frac{m_{\tilde\chi_1^0}}{m_{\tilde\ell}}\right)^2}} \ . \label{eq:medge}$$

How well does this work?

Endpoint	SU3 truth	SU3 measured	SU4 truth	SU4 measured
$m^{ ext{edge}}_{\ell\ell q} \ m^{ ext{thr}}_{\ell\ell q}$	501	$517 \pm 30 \pm 10 \pm 13$	340	$343 \pm 12 \pm 3 \pm 9$
$m_{\ell\ell q}^{ m thr}$	249	$265 \pm 17 \pm 15 \pm 7$	168	$161 \pm 36 \pm 20 \pm 4$
$m_{lq(\text{low})}^{\text{max}}$	325	$333 \pm 6 \pm 6 \pm 8$	240	$201 \pm 9 \pm 3 \pm 5$
$m_{lq(\mathrm{high})}^{\mathrm{max}}$	418	$445 \pm 11 \pm 11 \pm 11$	340	$320\pm8\pm3\pm8$

- Works reasonably well...
- Can even try to extract high-level theory parameters

SUSY Parameters at GUT scale!?!

@ E	
g 40 ATLAS	SU3 values = 0.004
35	0.0035
30	0.003
25	0.0025
20	-0.0035 -0.003 -0.0025 -0.002 -0.0015 -0.001
15	0.0015
10	0.001
5	0.0005
-2000 -1000 0 1000 2	3000
	A₀ [GeV]

Parameter	SU3 value	fitted value	exp. unc.

	sign(μ	(1) = +1	
$\tan \beta$	6	7.4	4.6
M_0	100 GeV	98.5 GeV	$\pm 9.3~{\rm GeV}$
$M_{1/2}$	300 GeV	317.7 GeV	$\pm 6.9~\text{GeV}$
A_0	$-300~\mathrm{GeV}$	445 GeV	$\pm 408~{\rm GeV}$
	sign(μ	(1) = -1	
$\tan \beta$		13.9	± 2.8
M_0		104 GeV	$\pm 18~{\rm GeV}$
$M_{1/2}$		309.6 GeV	$\pm 5.9~\text{GeV}$
A_0		489 GeV	$\pm 189~{\rm GeV}$

- Depends if we understand our model well enough
- Personally I am very skeptical that we can do this
 - But would be great to have that problem!

Conclusions

- Several methods of extracting property of particle
 - Template method is widely used
 - Matrix Element technique extracts more information
 - For known shapes simple fits can also be done
- Examples:
 - W boson mass (precision ~0.06%)
 - Top quark mass (precision ~0.7%)
 - SUSY particles
- I hope we will be able to measure properties of many new particles!
 - Let's see how to find them first in the next lecture