MICE Operations

Linda R. Coney – UC Riverside CM36 – June 2013

Outline

- Current Operations
 - Recent data-taking
 - Shifter & MOM training
 - Ongoing Operations efforts
- Step IV and VI Operations
 - Organization
 - Operational plan
 - Operations Risks
- Conclusions

Current Operations: Recent Running

October 2012

- Test upgrades to online systems, train shifters, magnet study and proton absorber study data
 - New operating system on all DAQ, C&M, Online Reconstruction machines, new master server for online system
 - Upgraded DATE DAQ, new interface with C&M, zero-suppression of fADCs, new unpacking code, higher trigger rate
 - Testing read/write from configuration database (CDB), testing/development of Run Control
 - New MLCR version of MAUS software, improved TOF/CKOV online plots

■ Trained

■ Ian Taylor (Warwick University postdoc), Celeste Pidcott (Warwick grad student)

■ December 2012

- Continue work from October, train shift personnel
- **■** Trained or partially trained:
 - David Adey (FNAL local), Yagmur Torun (IIT/FNAL)
 - Craig Macwaters (RAL local), Chris Rogers (RAL local)
 - Paul Smith (Sheffield)

Current Operations: Recent Running

- February 2013 Activation run, CKOV commissioning data
 - 14 hours running MICE target with ISIS beam bump at 4V beam loss
 - Double previous limit on beam loss investigate effects (if any) on activation of beam line components
 - PPS modifications in progress required beam to DSA only acceptable for this run
 - Successful test after post-run analysis, ISIS agreed to new standard loss limit of 4V
- Due for another training/testing run prior to EMR commissioning in July

Current Operations: Training

Shifter training

- Continue & refine shifter training
 - Difficult to train while taking data difficult to train fully without running
- Increasing pool of trained personnel
- Upcoming EMR commissioning run
 - 3+ weeks of running
 - Organizing staffing now

■ MOM training

- Institute formalized MOM training
- Better prepare wide range of MICE collaborators for duties/expectations during MOMing
- Solicited feedback from recent MOMs
- Developing off/on-site training protocols
 - Includes documentation, in-person handover, online tools, possible remote training

Ongoing Operations Efforts

- Continued development of all Online systems for incoming equipment
 - DAQ, C&M, Online reconstruction/Data Quality, Computing
 - Necessary emphasis on reliability and longevity
- Improve/integrate C&M systems
- Develop operational protocol/procedure for new beamline components
 - Will have significant impact on data-taking
 - Ex. SS ramp time = several hours
 - How we are able to use it? Overnight procedure and reestablishment of running will effect data-taking efficiency
 - Ex. LH2 requires 24/7 on site coverage
 - Ex. What required for magnet commissioning & RF tests?
 - Tied in with C&M confidence in a comprehensive C&M system enables us to rely on the system for automated use w/o external intervention
 - In process of determining local support level required for each system
- Establish consistent safety procedures/culture with long term stability
- Understand implications of field mitigation plan new rack room and expanded MLCR

Extending Operations to Step IV

- Current running experience feeds into Step IV/Step VI preparation
 - Commission final detector systems (EMR, full trackers)
 - Gain experience operating beam line & equipment
 - Refine initial procedures & extend to new equipment
- Current run personnel
 - MOM (MICE Operations Manager)
 - Rolling monthly appointment
 - Responsible for meeting scientific goals of MICE
 - Safety responsibility delegated from Project Manager
 - BLOC BeamLine On Call expert
 - Trained member of MICE collaboration
 - 2 shifters for ~9 hour shift
 - Trained members of MICE collaboration
 - SOC Software On Call expert often remote
- Procedures & preparation
 - Run during ISIS User Runs Normal working hours (plus weekends)
 - Run planning, beamline testing, online system testing, and software preparation understood

MICE Step IV

- Change operational mode
- Define for rest of experiment (Step IV, Step VI)
- Equipment:
 - **■** Both Spectrometer Solenoids
 - Two trackers installed in the SS magnets
 - One AFC (Focus Coil magnet & LH2 system)

Step IV Operations

- Operational support plan in development
 - New positions being defined
 - Run Coordinator/SuperMOM/Beamline Physicist
 - Understands STFC safety and operational environment
 - Provide link between MOMS
 - Local full time not necessarily STFC employee
 - Integration Physicist
 - Will use system-expert professional operators
 - RF this person has now joined MICE
 - Cryogenics
 - Magnets
 - Work in cooperation with MICE collaborators as shifters
 - 1 in MLCR on shift during running
- Retain MOMs on call for 1 month
 - Continues current role responsible for daily experimental planning & running duties
- Retain on call experts
 - BLOC (beam line), SOC (software), TROC (tracker), and more

Step IV Operations

Data-taking operations

- Run requirements max 12 hr/day, 5 days/week
- Need two of each type of shifter/day
- Long term running will be focused no multitasking of Hall use
- Single purpose during ISIS cycles Hall secured/equipment in steady state

For Step IV

- Assume 100k muons in 2 hrs
- Remember
 - For each configuration empty absorber, full LH2 absorber, solid absorber, wedge absorber, etc.
 - We have 3 momenta, 3 emittances, 2 field configurations, 4 β functions \rightarrow 72 measurements at 2 hours/measurement
- Therefore it takes 144 hrs for 100k muons at each point
- Each configuration requires 12 days at 12 hrs/day → 2.5 weeks in calendar time

Step IV Operations

- Original (spring 2012) estimate for Step IV run time was 1 year
 - Commission/calibrate detectors, check alignment
 - Magnet performance and alignment, Diffuser and beam matching
 - Empty channel measurements
 - First demonstration of cooling, empty absorber, full set of LH2 absorber measurements
 - Cooling measurements with LiH solid absorber
 - Cooling with solid absorbers, multiple scattering, energy loss
 - Wedge and half-wedge absorbers
- Some can be accomplished without beam or with selected magnets
- However, practically speaking, our Step IV run requirements extend the original estimate for run time from ~1 year to ~1.5 years
 - 5 ISIS cycles/year, average 5 weeks/cycle = 25 weeks of running/year
 - 5 days/week, 12 hrs/day with 2 MICE collaborators for each shift
 - Therefore \Rightarrow 25 weeks * 2 shifters = 50 person-weeks of shift each year
 - Would assume a similar case for Step VI

Step IV & VI Operations

Safety

- Understand implications under STFC rules of new equipment
 - Operations review of LH2 system completed
- Will negotiate other system requirements for commissioning & operations

PPS

- Understand implementation of system with SC magnets
 - Recently reviewed/approved at Technical Board meeting
- Step VI understand implementation with RF
- Recent annual PPS functional testing exercised SC permit and RF permit portions of system
- Step VI includes everything from Step IV + RF
 - Full time RF engineer now in place in MICE
 - TIARA test summer 2013

Step IV Operations Risks

- Personnel (on several levels)
 - Step IV requires three new expert positions
 - Mitigation: 1 in place now, other two likely to be recruited starting ~ April 2014
 - Will run 50 person-weeks of MICE shifters each year for Step IV/VI
 - Mitigation: must recruit/require standard shift requirement for each collaboration member/institute
 - Will train all MICE collaboration shifters
 - Training procedures in place; however, need to ramp up numbers
 - Difficult to maintain shifter knowledge w/o consistent operation of experiment
 - MICE experiment largely working with shifters who are volunteers from universities when running/doing data analysis – we cannot lose this effort
- Smooth operations requires robust and comprehensive C&M system
 - Mitigation: see presentation by Pierrick Hanlet

Step IV Operations Risks

- Unknown effect of magnets operating in proximity to each other for purposes of both training and experimental use
 - It may take longer to take desired data
 - Mitigation not clear how to predict this need magnets at RAL and operational

- Delays or loss in data-taking time
 - Accelerator down-time scheduled or unscheduled
 - MICE equipment maintenance/lifetime
 - Mitigation increase efficiency of running increase beam loss, target rate, online analysis

Conclusions

- Current running provides solid foundation for extending into Step IV operations
- Many changes coming for Step IV
 - New equipment, new procedures, long periods of running
- Making progress toward meeting challenges of Step IV Operations
 - Developing operational plan support and scope
 - Identifying/hiring necessary personnel
 - Making solid advances on technical handling of new hardware (DAQ, Controls, magnet integration, upcoming EMR commissioning)