

Why are $CC\pi^+$ events so interesting?

- •Rich channel with resonant and coherent interactions -- lots to learn!
- Largest background to CCQE sample
- Possible signal channel for the oscillation analysis
- •Use as cross check to constrain wrong sign flux in antineutrino mode

Disagreement in low Q² seen in MiniBooNE and other experiments

Interest in $CC\pi^+$:

- Rich channel with resonant and coherent interactions -lots to learn!
- Largest background to CCQE sample
- Possible signal channel for the oscillation analysis
- •Use as cross check to constrain beam flux (anti-neutrino mode)

K2K charged current pion production

Disagreement in low Q² seen in MiniBooNE and other experiments

$CC\pi^+$ events in MiniBooNE: tagged via outgoing muon and decay products of outgoing π^+

Far Michel

Two "subevents" from muon and "close" michel

A third "subevent" from "Far" Michel

 π +

First subevent consistent with neutrino 100 2000 4 interaction vertex. Later subevents consistent with michels

Close and Far Michels come from muons with different lifetimes.....

~70,000 events total for 5.8E20 pot (entire neutrino data set)

1.6 % ν_μ n→ μ ̄ρτί

83% pure CCπ⁺

Modeling $CC\pi^+$ interactions at MiniBooNE:

- v3 NUANCE Monte Carlo to generate events (Casper)
- •Resonance Model: Rein-Sehgal, Fermi Gas Model, $M_A^{1\pi}$ =1.1 GeV, added non-isotropic Δ decay (Garvey)
- •Coherent model: Rein-Sehgal, $M_A^{coh}=1.0$ GeV, constraint from NCcoh π° (MiniBooNE)
- •DIS: Bodek-Yang
- •FSI: Partnuc model tuned to external π -¹²C data

Systematic errors shown on MC include uncertainties on

- Flux
- Cross sections
- Optical model (fully correlated error matrix)

Comparing data with Monte Carlo

Muon kinetic energy

- •error bars are statistics plus systematics fully correlated
- •plots are relatively normalized

J. Nowak

Muon angluar distribution

- •error bars are statistics plus systematics fully correlated
- •plots are relatively normalized

Reconstructed neutrino energy

$$E_{\nu}^{QE} = \frac{1}{2} \frac{2M_{p}E_{\mu} - m_{\mu}^{2} + (m_{\Delta}^{2} - m_{P}^{2})}{M_{p} - E_{\mu} + \sqrt{(E_{\mu}^{2} - m_{\mu}^{2})} \cos\theta_{\mu}}$$

- error bars are statistics plus systematics fully correlated
 nlots are relatively
- plots are relatively normalized

Momentum Transfer, Q²

- •error bars are statistics plus systematics - fully correlated
- •plots are relatively normalized

Understanding Q² dis-agreeement *→ work in progress*

- •Differing predictions from event generators?
- •Nuclear effects missing in nuclear model?
- •Outdated vector form factors in R-S?
- •Outdated Fermi Gas Model? (need LDA)
- $\bullet M_A^{1\pi}$?
- •Axial form factors?

•...

Understanding Q² dis-agreeement → work in progress

- •Differing predictions from event generators?
- •Nuclear effects missing in nuclear model?
- •Outdated vector form factors in R-S?
- •Outdated Fermi Gas Model? (need LDA)
- $\bullet M_A^{1\pi}$?
- •Axial form factors?

•...

MC event generator "owners" prepared special samples using MiniBooNE flux for these comparisons

- •NUANCE (Casper)
- •NEUGEN (Gallagher)
- •NEUT (Hayato)

generator level comparisons for starters.....

Black(NUANCE) Red(NEUT), Blue(NEUGEN), relnorm

Look at differences in predictions for Q² distribution for NUANCE compared to NEUT and NEUGEN

All generators are R-S based

NEUGEN:
extensive
tuning using
e scattering data

Black(NUANCE) Red(NEUT), Blue(NEUGEN), relnorm

Look at differences in predictions for Q² distribution for NUANCE compared to NEUT and NEUGEN

Q² predictions are very similar

some differences below Q²=0.2 GeV²

Modeling of nuclear effects not understood?

Compare to Singh model integrated over MiniBooNE flux to get a feel for the effects of using different models....

Can different vector form factors make a difference?

Compare
NUANCE (R-S) to
Lalakulich (RaritaSchwinger
formalism coupled
with extensive
fitting to electroproduction data)

Relatively normalized comparison

consistent with each other!

Understanding Q² dis-agreeement → work in progress

- •Differing predictions from event generators?
- •Nuclear effects missing in nuclear model?
- •Outdated vector form factors in R-S?
- •Outdated Fermi Gas Model? (need LDA)
- $\bullet M_A^{1\pi}$?
- •Axial form factors?

•...

So far, no smoking gun --> still investigating.....

~1000 events so far from $CC\pi^+$ interactions from (Wrong Sign) neutrinos in antineutrino mode

content in anti-nu mode!

Anti-neutrino mode $CC\pi^+$ muon energy

- •Relatively normalized
- •statistical errors only

Anti-neutrino mode $CC\pi^+$ muon angle

- •Relatively normalized
- •statistical errors only

Anti-neutrino mode $CC\pi^+$ neutrino energy

$$E_{\nu}^{QE} = \frac{1}{2} \frac{2M_{p}E_{\mu} - m_{\mu}^{2} + (m_{\Delta}^{2} - m_{p}^{2})}{M_{p} - E_{\mu} + \sqrt{(E_{\mu}^{2} - m_{\mu}^{2})\cos\theta_{\mu}}}$$

- •Relatively normalized
- statistical errors only

Anti-neutrino mode $CC\pi^+$ Momentum Transfer

- ▼
- •Relatively normalized
- •statistical errors only

Conclusions

- • $CC\pi^+$ sample
 - ~70K events in neutrino mode!
 - working to understand Q² distribution
 - new data from anti-neutrino mode
- •Ultimate Goals
 - CCπ⁺/CCQE ratio
 - $M_{\Delta}^{1\pi}$ extraction
 - differential cross section
 - coherent contribution

Exciting time for cross section physics on MiniBooNE!