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Nested Head-Tail Basis  
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I am using         equally populated rings which radii    

 

are chosen to reflect the phase space density.      

rn r

AB 



Starting Equation, single bunch  

• In the air-bag single bunch approximation, beam equations of motion 

can be presented as in Ref [A. Chao, Eq. 6.183]: 

 

 

 

      where       is a vector of the HT mode amplitudes,   

 

 

 

 

 

       

       is the damper gain in units of the damping rate, 

 

        time is in units of the angular synchrotron frequency.    
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Analysis of solutions  
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1. For every given gain and chromaticity, the eigensystem is found for the 

provided impedance tables or functions.  

 

2. The complex tune shifts are found from the eigenvalues                             

 

3. The stabilizing octupole current is found from the stability diagram for every 

mode, then max is taken.       
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Coupled Equidistant Bunches  
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Main idea:  

 

For LHC, wake field of preceding bunches can be taken as flat within the 

bunch length.  

 

The only difference between the bunches is CB mode phase advance, 

otherwise they are all identical.  

 

Thus, the CB kick felt by any bunch is proportional to its own offset, so the 

CB matrix          has the same structure as the damper matrix       : 
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Wake and impedance are determined according to A. Chao book.  
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Old damper gain 
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Old narrow-band  ADT gain profile  (W. Hofle, D. Valuch) .  

At 10 MHz it drops 10 times. The new damper is bbb for 50ns beam. 

 

Below gain is measured in omega_s units, max gain=1.4 is equivalent to 50 

turns of the damping time.     
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CB Mode Damping Rate   
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With             as the frequency response function of the previous plot, the time-

domain damper’s “wake” is 

 

 

 

 

assuming  this response to be even function of time (no causality for the damper!). 

 

From here (equidistant bunches!): 

 

 

 

 

 

 

 

where          is the rate provided for low-frequency CB zero-head-tail modes at 

zero chromaticity.  

( )g 

 
0

( ) ( )cos / ,G g d    


 

0

1

0

1

(0) 2 ( )cos( )

;

(0) 2 ( )

k

k

G G k k

d d

G G k





 




















d

AB 



CB Wake and Gain Factors for the Old ADT   
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2(SB and CB), flat ADT, Tunes at the Plateau    
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•For unstables                             . 

 

 

 

 

•Weak head-tail is justified at the plateau. 

 

• Most unstable mode (MUM) has ~max tune 

shift as well. 

tunes tune shifts 

all tunes 
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2(SB and CB), flat ADT, MUM 
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Growth rate and -tune shift of the most unstable mode (MUM) vs chroma and gain.  

Both are in units of Qs.   

 

Note that at the plateau the rate (Im[dQ_c]) is ~20-30 times smaller than the shift (Re[dQ_c]).   
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2(SB and CB), flat ADT, MUM CM and Coupling 
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Center of mass (CM) and head-tail coupling parameters for MUM.  

 

Note strong suppression of CM at the plateau by the damper.  

Note that at plateau the weak head-tail approximation is well-justified.  
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Coherent Beam-Beam  
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Main assumption: bunch length << beta-function. For transversely dipolar modes, 

CBB is a cross-talk of bunch CM – thus, intra-bunch matrix structure is similar to 

the ADT and CB:  

 

 

 

 

 

 

 

 

 

 

 

Here 2 identical opposite IRs are assumed (IR1 and IR5 for LHC) with 2K+1  LR 

collisions for each, every one with its beta-function and separation            .  

 

Alternating x/y collision for IR1/IR5 is assumed with      as a difference between 

the two phase advances, while             is the incoherent beam-beam tune shift 

per IR.   
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Coherent BB at Plateau: effect ~30%  
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Stability Diagram   
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Stability diagram (SD) is defined as a map of real axes  on the complex plane:   

 

 

 

 

 

 

 

To be stable, the coherent tune shift has to be inside the SD.  
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Stability Diagram: LO 200A, Gauss
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For LHC, with Landau octupoles (LO):  

(E.Metral, N.Mounet, B.Salvant, 2010) 
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see more on SD with        at E. Metral & A. Verdier, 2004  nF
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LHC stability diagrams for both emittances 2m  and 100A of the octupole current. 
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Benchmarking: NHT vs BeamBeam3D (S.White) 
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BeamBeam3D (SW) 

NHT  (AB) 

Threshold chromaticity vs gain for  

 

two single-bunch LR-colliding beams,  

end of the squeeze parameters,  

no octupoles.  

 
BeamBeam3D data – ICE mtg, 07/11/2012. 

Highest growth rates for  

 

single beam, single bunch,  

maximal gain and nominal impedance 
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Couple Bunch Factor: LO+, bbb ADT, 2Imp  
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50ns beam 
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Tails Factor: LO+, CB, bbb ADT, 2Imp  
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Tails Factor: LO-, bbb ADT, 2Imp  
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Beam-Beam Factor: 2Imp, CB, CBB =/2, LO+, bbb ADT 
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Impedance Factor: CB, CBB =/2, LO+, bbb ADT 
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Long-Range Beam-Beam Tune Spread  

• For the alternating x/y IR1/IR5 collision scheme, the octupolar LR tune 

spread is  

 

 

 Here          is the linear LR bb tune shift per IR,           is beam 

separation in units of their rms size at that point. Round betas are 

assumed. 

 

• For LHC at the end of the squeeze                        ,             .    
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Beam-Beam-Beam Effect in LHC  
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LO=200A – computed threshold 

 

(Pacman) BB only, LO=0 

 

BB and LO=500A 

 

BB, LO=500A, dQe0=6.0E-4 

 

BB, LO=500A, dQe0=8.0E-4 

 

BB, LO=500A, dQe0=1.0E-3 

 

Markers – MUMs, colors 
correspond 
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Instability is driven by e-cloud attracted by 2 beams 

in the high-beta area of IR1&5.  

 

It happens due to a right-collapse of the SD + low-

frequency e-wake with positive coherent tune 

shifts.  

Electron wake: 



Summary: power of the model  

• Method of nested head-tail modes (NHT) is implemented on a base of 

Mathematica. It allows to find coherent tunes for all the modes, 

solving the eigenproblem at its 4D set:  

              azimuthal  radial  coupled-bunch  beam-beam.  

 

• The external data: impedance/wake, damper frequency profile, 

distribution functions and nonlinearities, beam-beam scheme.  

 

• Based on that, all the coherent modes with all the details are 

computed.  

 

• For given machine and beam parameters, computation takes ~1s at 

my 3 year-old laptop. 

 

• NHT is successfully benchmarked with BeamBeam3D tracking. 
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Next steps  

• To include longitudinal nonlinearities. 

 

• To include detuning wakes/impedances. 

 

• To include train structure. 

 

• To make all that user friendly and public. 
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Many thanks! 


