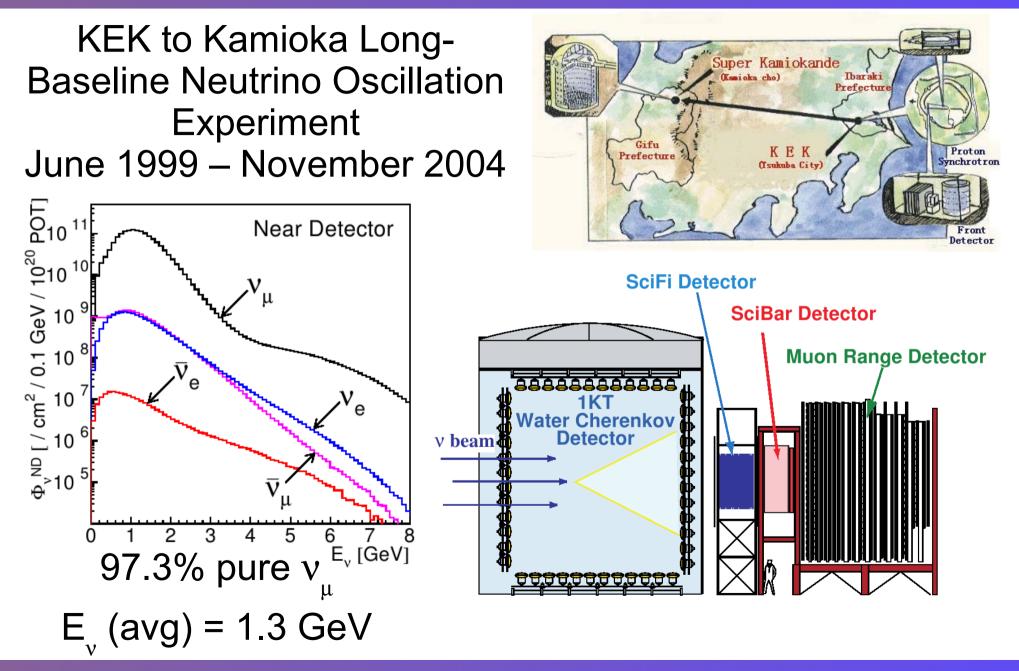
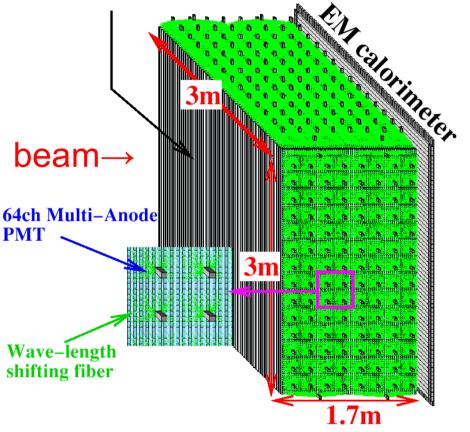
Charged-Current π⁺ Production at K2K

Lisa Whitehead Stony Brook University

NuInt07 June 1, 2007



Outline


- K2K and the SciBar detector
- coherent π^+ result (2005)
- MC model
- event selection
- resonant π^+ production measurement
- summary

The K2K Experiment

SciBar

Extruded Scintillators (15ton)

Upgrade to near detector (replaced a lead glass detector)

Oct. 2003 - Nov. 2004

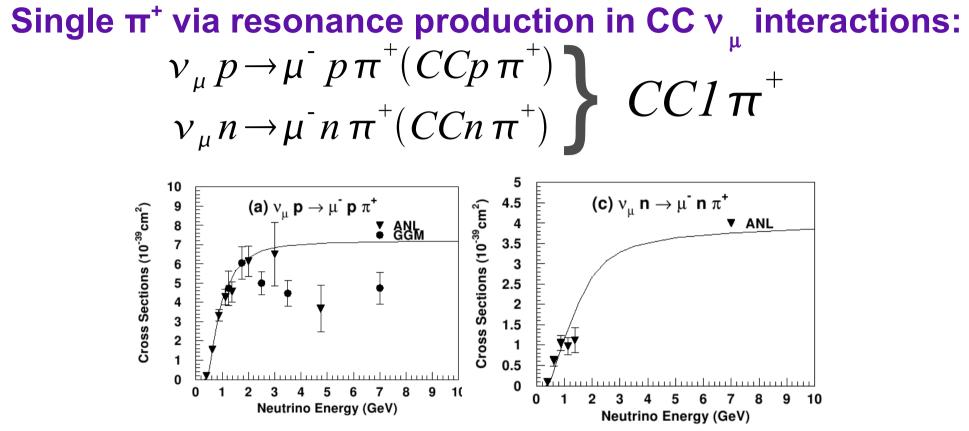
- fully active detector
- 14,848 Scintillating Bars
- polystyrene (C₈H₈)
- light guided by WLS fibers to 64-channel MAPMTs
- 1.7 x 3 x 3 m³ (~15 tons)
- one plane is 116 bars
- one layer is an x-plane and a y-plane
- 64 layers along the beam direction

CC Coherent Pion Production

$$v_{\mu}A \rightarrow \mu^{-}A\pi^{+}$$
 measurement made using SciBar data

Event Selection:

CC, 2 tracks, nonQE-like 2^{nd} track pion-like and forward low vertex activity q^{2}_{rec} <0.1 GeV²


(~47% pure)

Entries / 0.05(GeV/c)² Data 120 CC coherent π 80 CC 1_π, DIS, NC CC QE 40 0 0.6 1.2 0.2 0.8 04n q²_{rec} (GeV/c)²

result is consistent with no CC coherent pion production

upper limit of 0.60×10^{-2} at 90% confidence level for CC coherent pion production cross section relative to the total CC cross section PRL **95**, 252301 (2005)

CC1π Interactions

Rein and Sehgal model:

• Cross section for each final state is calculated as a coherent superposition of all the possible contributing resonances, W<2 GeV/ c^2 (based on K2K data)

- axial-vector mass, $M_A = 1.1 \text{ GeV/c}^2$ (based on K2K data)
- also used for resonant single K and η production

Other Neutrino Interactions

quasi-elastic and elastic scattering based on Llewellyn Smith model, $M_{A}^{QE} = 1.1 \text{ GeV/c}^2$ (based on K2K data)

Deep inelastic scattering with GRV94 structure functions. We use the correction to GRV94 proposed by Bodek&Yang which reduces the cross section for low q^2 .

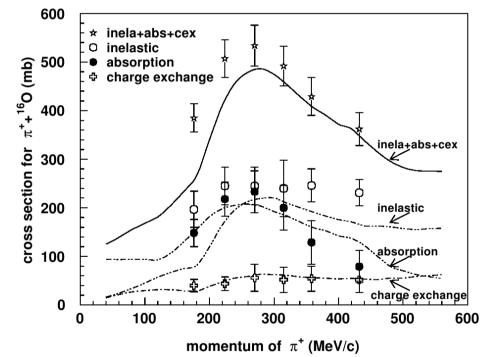
NC coherent pion production based on Rein and Sehgal model with correction by Marteau et al.

CC coherent pion production is ignored in model (based on SciBar measurement)

Interaction type	Percent of Total
Charged-current (CC)	72%
$ u_\mu n o \mu^- p$	32%
$ u_{\mu}p ightarrow \mu^{-}p\pi^{+}$	18%
$ u_\mu n o \mu^- n \pi^+$	6%
$ u_\mu n o \mu^- p \pi^0$	5%
$ u_{\mu}N ightarrow \mu^{-}X$	9%
CC (other)	2%
Neutral-current (NC)	$\mathbf{28\%}$

Nuclear Interactions

Neutrino interaction with p,n is occurring inside the nucleus \rightarrow must consider the effect of the nuclear medium

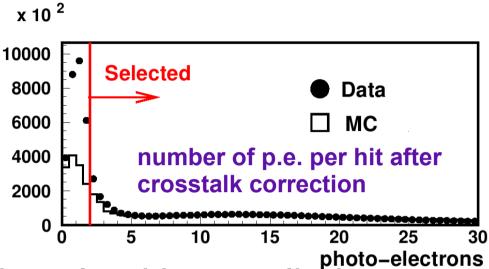

Relativistic Fermi gas model Fermi surface momentum = 225 MeV/c for C

Pauli exclusion effect

Nuclear potential = 27 MeV for C

Interactions of outgoing particles inside the nucleus:

- nucleon rescattering
- pion absorption, inelastic scattering, charge exchange
- delta absorption (in resonance production)



SciBar Event Reconstruction

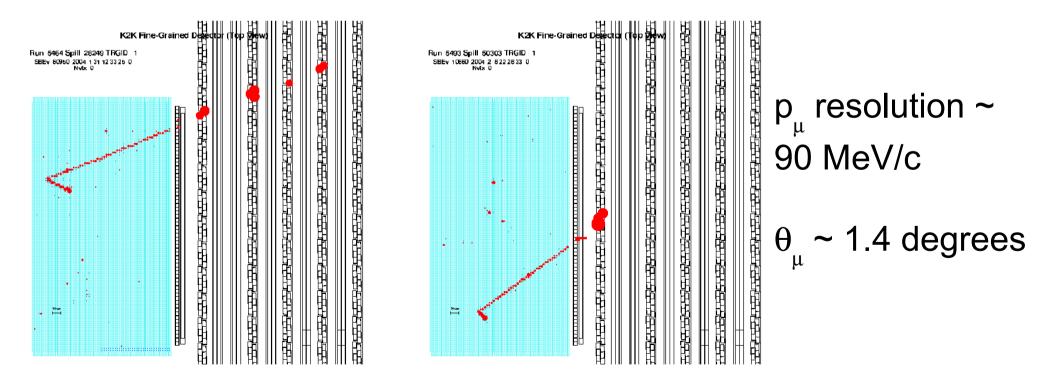
Crosstalk correction

Hit Threshold: > 2 p.e.

Tracking:

- Cellular automaton tracking algorithm applied separately to x-z and y-z projections

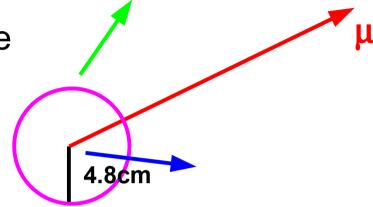
- require hits in 3 consecutive layers (8 cm \rightarrow 450 MeV/c for proton)

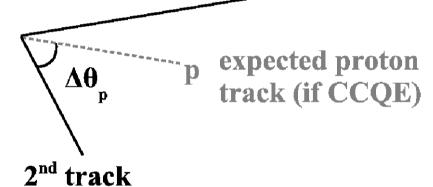

 - 3D reconstruction by matching z-track edges and timing of 2D tracks

- reconstruction efficiency for single track passing through 4 or more layers (10 cm) is 99%

CC Event Selection

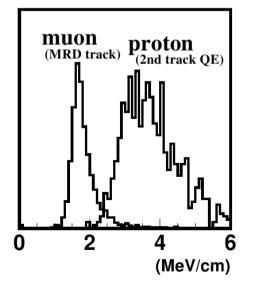
Select CC events by identifying the muon.

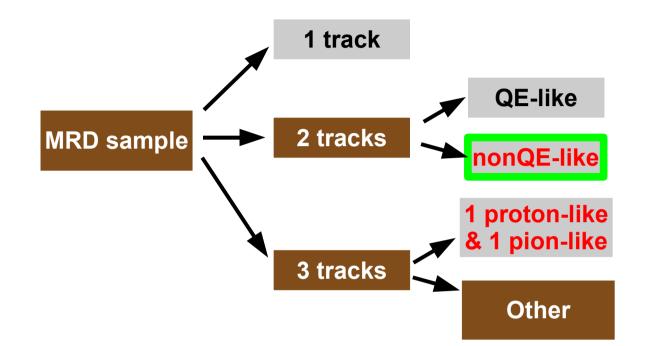

- match SciBar track to track or first layer hits in the MRD (muon momentum threshold 450 MeV/c)
 set of events where SciBar-MRD matched track is found is the MRD sample, our CC-enriched sample
- Purity of CC events in the MRD sample is 96%



Event Classification

1) Vertex matching: Cut tracks that are not "at vertex"

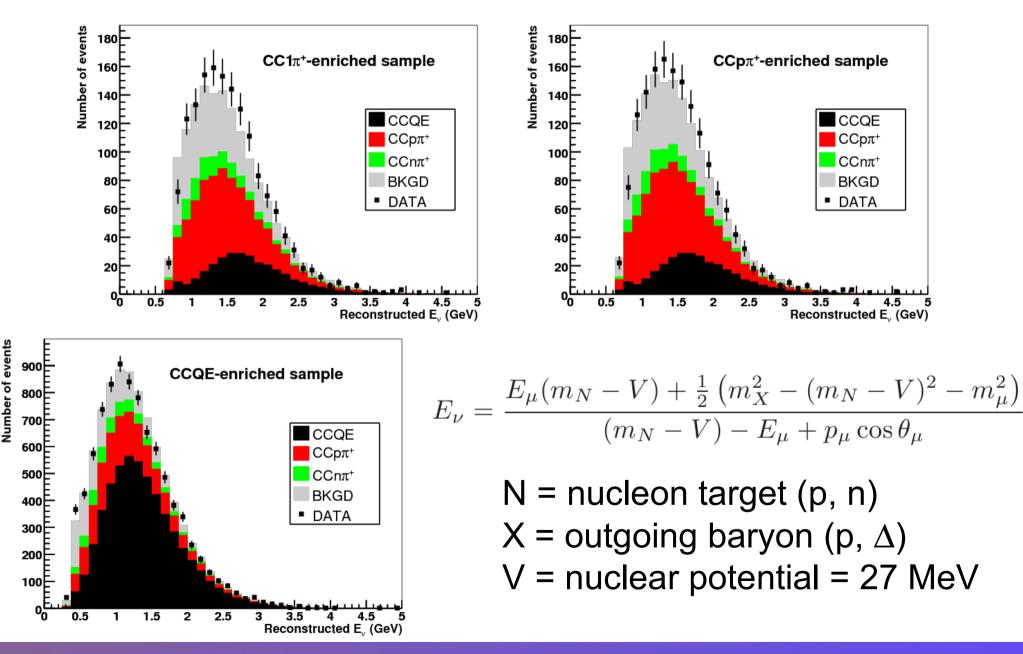




2) For 2-track events, separation in QE-like and nonQE-like based on direction of 2nd track

3) Particle ID: Muon Confidence Level (MuCL), likelihood variable based on dE/dx to separate protons from pions

Event Classification



CCQE-enriched: 8894 evts, 60% purity, 60% eff

CCpπ⁺-enriched: 1619 evts, 41% purity, 13% eff

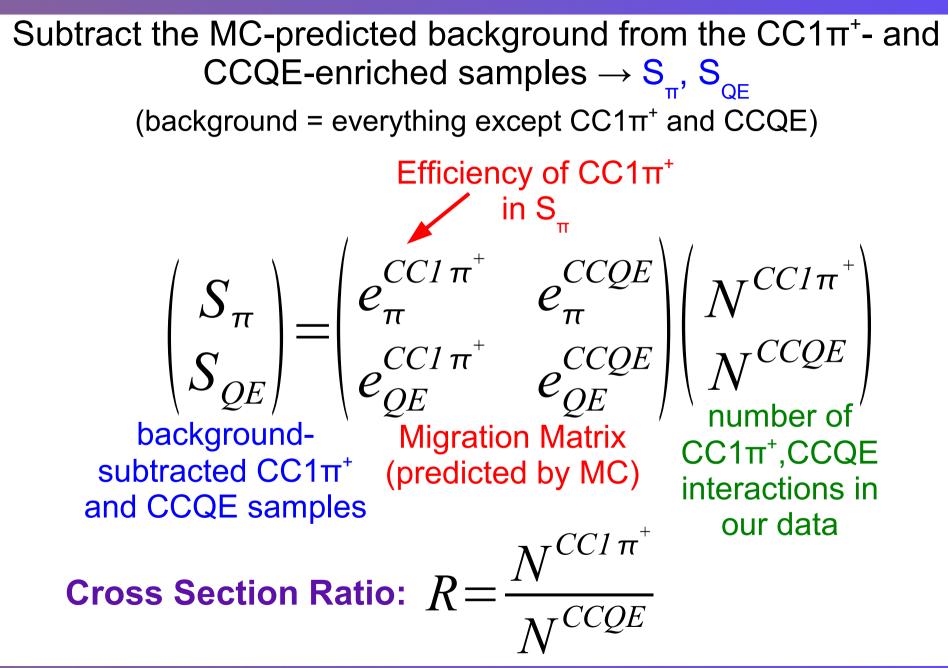
CC1 π^+ -enriched: 1566 evts, 48% purity, 11% eff

Neutrino Energy Reconstruction

Goal

Measure the cross section for inclusive $(CC1\pi^+)$ and exclusive $(CCp\pi^+)$ resonant single pion production relative to the CCQE cross section (to avoid large uncertainties in absolute flux measurement) $\sigma^{CC1\pi^+}$ $\sigma^{CCp\pi^+}$

$$R_{inc} = \frac{\sigma^{CCDR}}{\sigma^{CCQE}}, R_{exc} = \frac{\sigma^{CCDR}}{\sigma^{CCQE}}$$


$$E_{\nu}$$
 Range (GeV)

Measure both the total cross section ratio and the neutrino energy dependent ratio, energy bins shown in table \rightarrow

 $\begin{array}{r} 0.00 - 1.35 \\ 1.35 - 1.72 \\ 1.72 - 2.22 \\ > 2.22 \end{array}$

Will describe the $CC1\pi^+$ measurement, but method is same for the $CCp\pi^+$ measurement, using the appropriate enriched sample

Analysis Strategy

Analysis Strategy

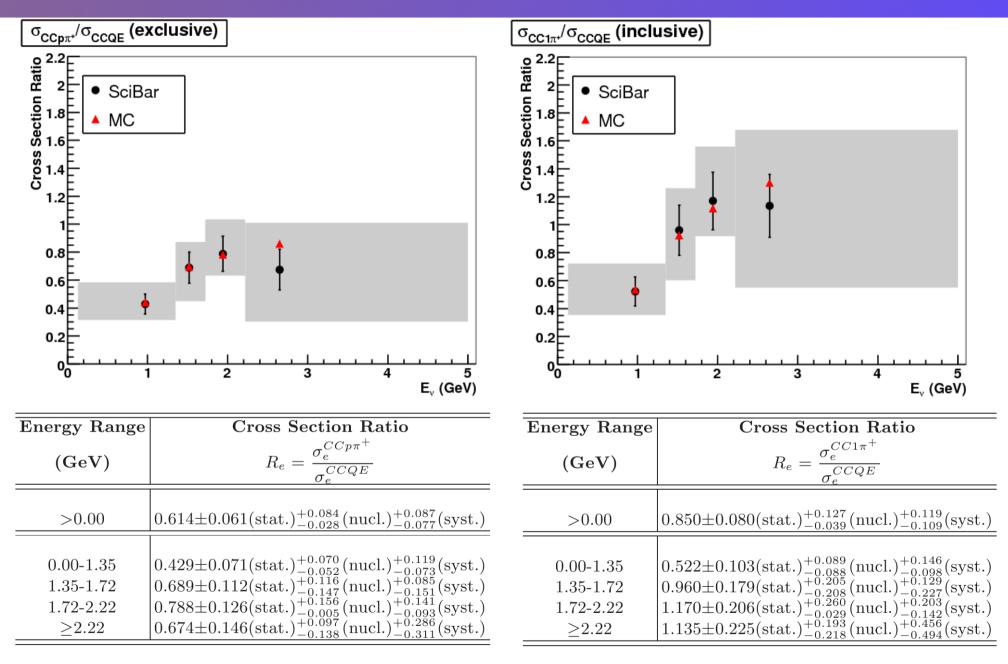
For energy-dependent cross section ratio, migration matrix accounts for migration among neutrino energy bins and between $CC1\pi^+$ and CCQE samples.

Still consider only overall normalization of CCQE cross section.

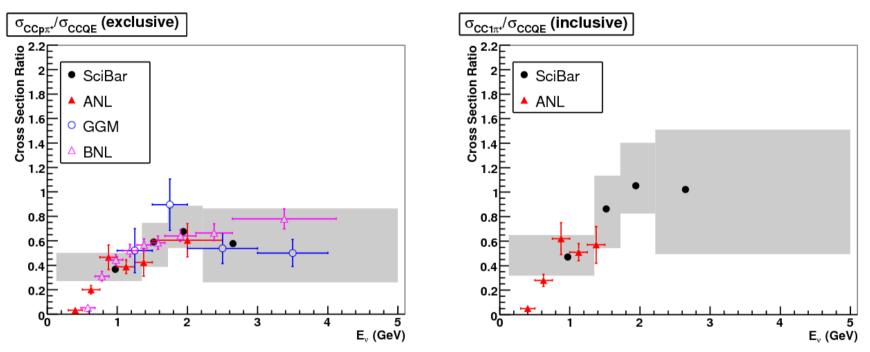
$\begin{bmatrix} S_{\pi,1} \\ S_{\pi,2} \\ S_{\pi,3} \\ S_{\pi,4} \end{bmatrix} =$	_	4x4 CC1π ⁺ to CC1π ⁺	4x1 CCQE to CC1π⁺	$N_{1}^{CC1\pi^{+}}\\N_{2}^{CC1\pi^{+}}\\N_{3}^{CC1\pi^{+}}\\N_{4}^{CC1\pi^{+}}$	$R_{e} = \frac{N_{e}^{CC1\pi^{+}}}{f_{e}N^{CCQE}}$ $f_{e} \text{ is fraction of CCQE}$
S _{QE}		1x4 CC1π⁺ to CCQE	1x1 CCQE to CCQE	N^{CCQE}	in energy bin e (predicted by MC)

Systematic Errors

• Nuclear effects: consider uncertainty in model for pion inelastic scattering (+-30%), pion absorption (+-30%), proton rescattering (+-10%), and Fermi surface momentum (+- 5 MeV/c)


• **Detector simulation:** uncertainty in model for crosstalk (+-0.0025), PMT energy resolution (+-10%), and scintillator quenching (+-0.0023)

• **Reconstruction:** uncertainty in hit threshold (+-15%) and angular resolution (+-0.009), energy scale (+-2.7%)


• Neutrino Interaction Model: uncertainty in M_A^{QE} (+-0.1 GeV/c², shape only), Bodek/Yang correction to DIS structure functions (+-30%), observed discrepancy in DIS cross section (+-40%)

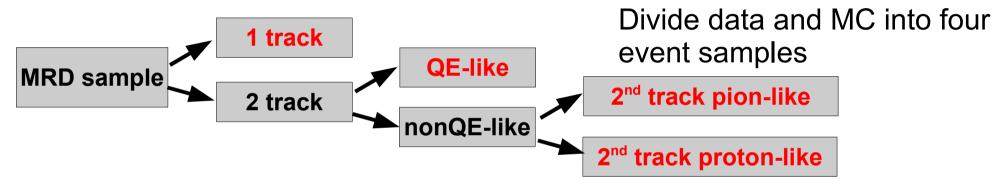
• Neutrino Energy Spectrum Measurement: +- 1σ for seven neutrino energy bins

Results

Comparison to Other Experiments

ANL: Argonne 12 foot bubble chamber, hydrogen and deuterium target, peak neutrino energy 0.5 GeV

GGM: CERN bubble chamber, propane-freon target, neutrino energy < 10 GeV

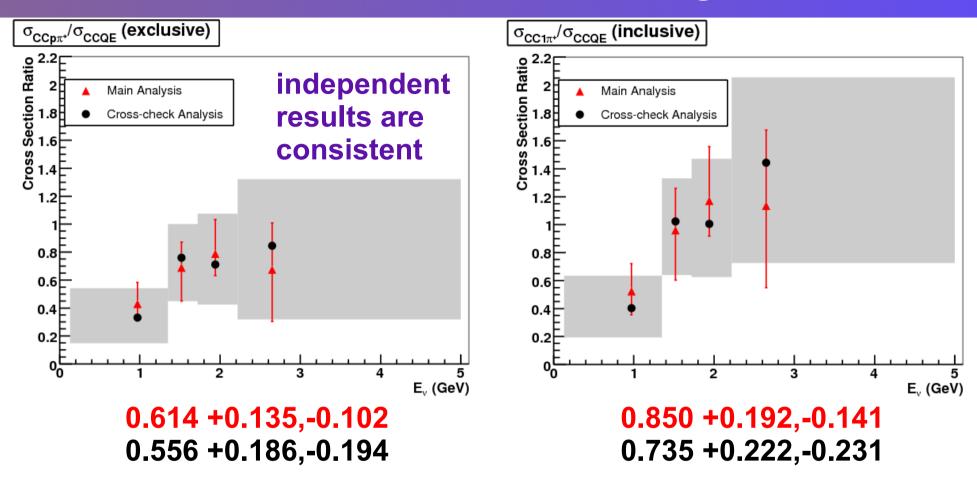

BNL: Brookhaven 7 foot bubble chamber, deuterium target, mean neutrino energy 1.6 GeV

NOTE: SciBar data points have been scaled to take into account the fact that our target material (C_gH_g) has more protons than neutrons.

Cross-Check Analysis

An independent analysis is done using same data but a different method:

Bin the data using muon kinematic variables and perform a maximum likelihood fit based on Poisson statistics

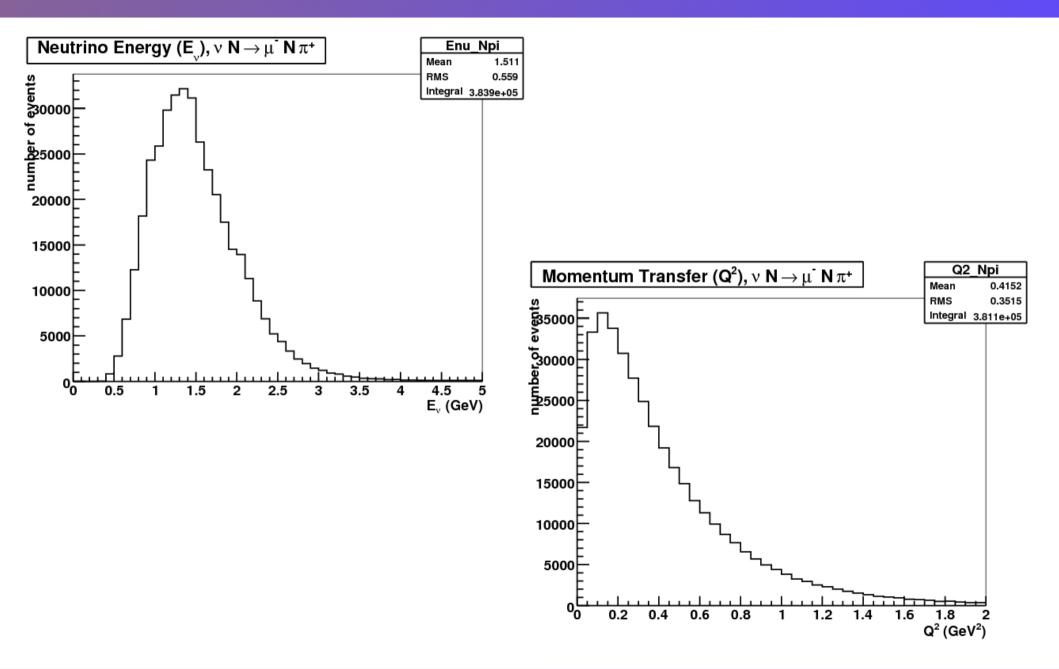

MC events further divided based on:

- interaction type CCQE, CC1 π^+ , and background.
- true neutrino energy

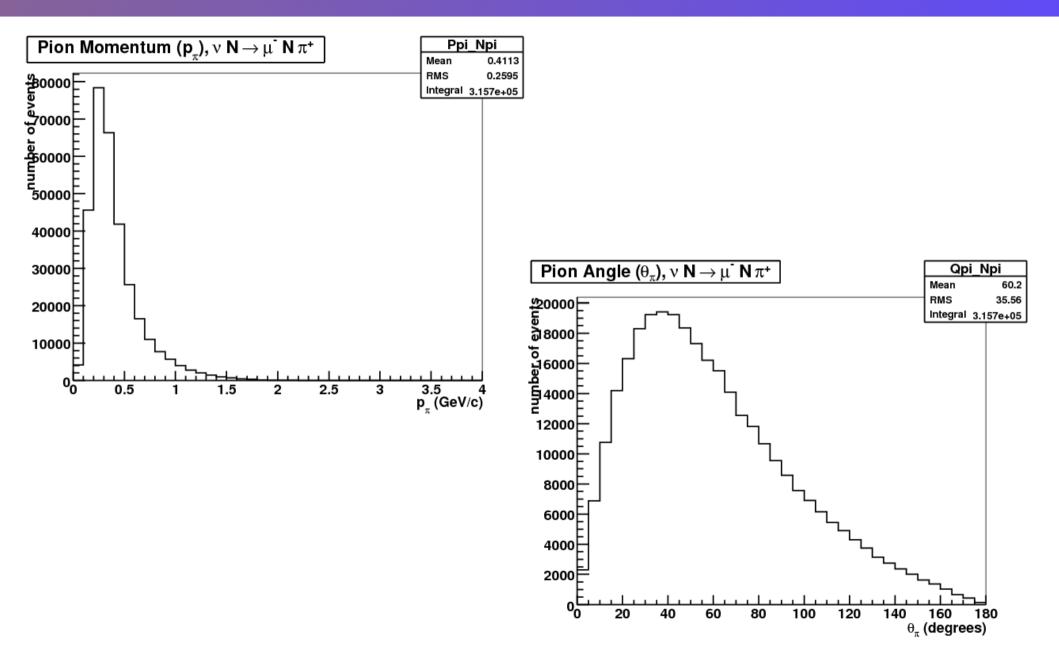
Data and MC binned in p_{μ} vs. θ_{μ} bins (0.2 GeV/c, 10° bins)

Fit gives number of CCQE, $CC1\pi^+$, and bkgd. interactions in data relative to MC – can extract cross section ratio from this

Cross-Check Analysis

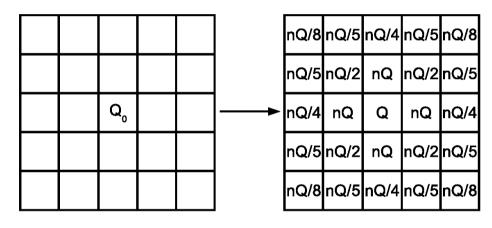

Major differences between this analysis and main analysis:
1) energy-scale is a free parameter
2) background is not fixed to MC prediction (in main analysis, background fluctuations considered only as a systematic error)

Summary


- Both coherent and resonant single π^{*} production has been studied at K2K using data from the SciBar detector
- data is consistent with no CC coherent pion production (published in 2005)
- cross section for resonant single π^+ production relative to the CCQE cross section is consistent with our MC model and results from previous experiments (paper will be submitted for publication this summer)

Backup Slides

CC1π⁺ Events



CC1π⁺ Events

SciBar Detector Simulation

Crosstalk in the MAPMT ~3% in neighboring channels

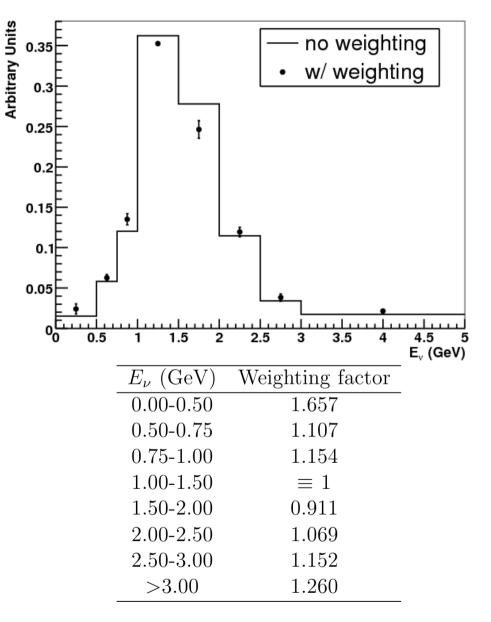
Scintillator quenching for protons: Birks' constant (*c*) measured with SciBar prototype in proton beam

$$\frac{\Delta E_{vis}}{\Delta E_{loss}} \propto \frac{1}{1 + c \cdot dE / dx (expected)}$$

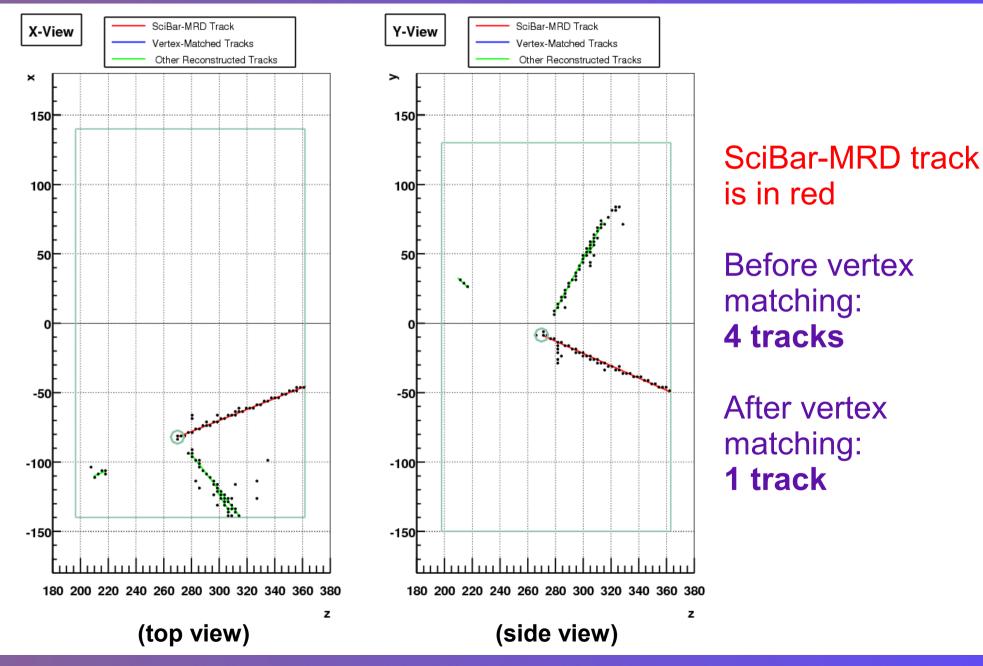
Attenuation length of light in fiber ~350 cm by measurement

Light yield calibration measured for each bar ~20 p.e. for MIP

travel time for light in fiber: 16 cm/ns

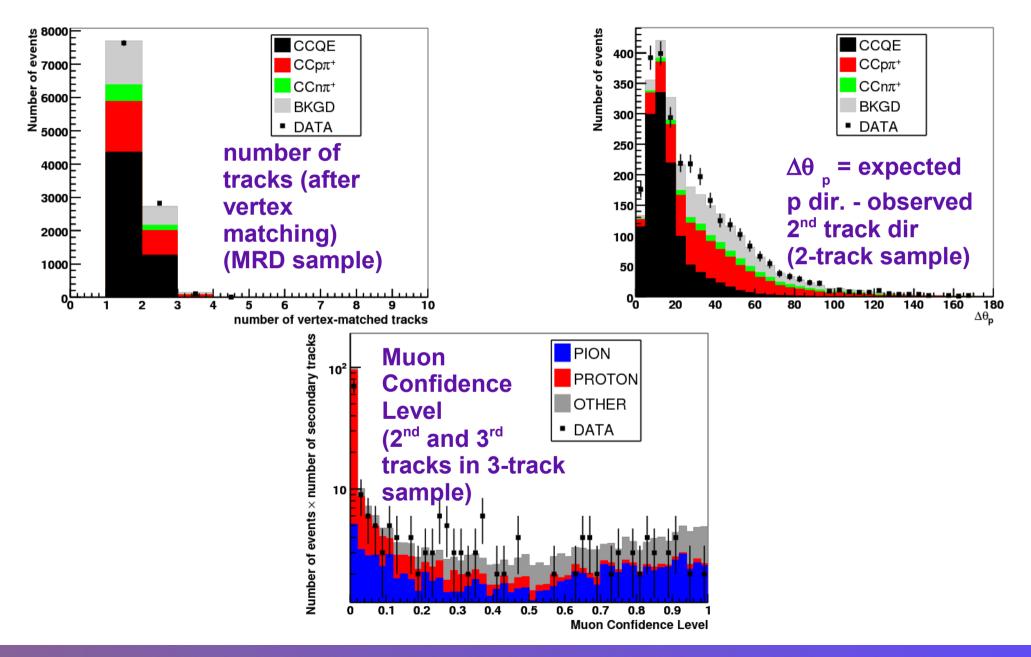

PMT energy resolution of 40%

Measured Energy Spectrum


Data from all near detectors is used to measure the neutrino energy spectrum in 8 energy bins.

Then the predicted energy spectrum from the beam-MC is reweighted to match the measurement.

Error of the reweighting factors and correlation among them is considered as a systematic error.


Vertex Matching

L. Whitehead, NuInt07

June 1, 2007

Event Classification

Summary of Systematic Errors

Exclusive overall cross section ratio

source of systematic	err	or
MC statistics	+0.009	-0.009
Model effects		
$M_A~(\mathrm{CCQE})~\pm 0.1$	+0.021	-0.021
Bodek/Yang Corr $\pm 30\%$	-0.021	+0.023
$N\pi$ weighting	$\pm 0.$.056
Neutrino Flux	+0.010	-0.008
Sub-total	+0.065	-0.064
Nuclear effects		
π absorption $\pm 30\%$	+0.053	-0.015
π inelastic scattering $\pm 30\%$	+0.062	-0.022
proton rescattering $\pm 10\%$	+0.021	-0.007
Fermi motion (\pm 5MeV/c)	\pm 0.	004
Sub-total	+0.084	-0.028
Detector effects		
Cross talk $\pm 0.25\%$	+0.035	-0.021
$ m PMT$ resolution $\pm 10\%$	+0.025	-0.010
Quenching constant ± 0.0023	+0.005	+0.012
Sub-total	+0.045	-0.023
Reconstruction effects		
Hit threshold $\pm 15\%$	\pm 0.	035
Muon momentum scale $\pm 2.7\%$	-0.004	+0.003
Angular resolution (smeared by 0.009)	\pm 0.	007
Sub-total	+0.036	-0.036
Total	+0.121	-0.082
Total	+20%	-13%

Inclusive overall cross section ratio

source of systematic	-	ror	
MC statistics	+0.012	-0.012	
Model effects			
M_A (CCQE) ±0.1	+0.024	-0.024	
Bodek/Yang Corr $\pm 30\%$	-0.031	+0.033	
$N\pi$ weighting	± 0	.079	
Neutrino Flux	+0.013	-0.011	
Sub-total	+0.090	-0.089	
Nuclear effects			
π absorption $\pm 30\%$	+0.089	-0.023	
π inelastic scattering $\pm 30\%$	+0.084	-0.029	
proton rescattering $\pm 10\%$	+0.034	-0.007	
Fermi motion (± 5MeV/c)	± 0.008		
Sub-total	+0.127	-0.039	
Detector effects			
Cross talk $\pm 0.25\%$	+0.044	-0.034	
PMT resolution $\pm 10\%$	+0.034	-0.015	
Quenching constant ± 0.0023	+0.011	+0.016	
Sub-total	+0.058	-0.037	
Reconstruction effects			
Hit threshold $\pm 15\%$	± 0	.049	
Muon momemtum scale $\pm 2.7\%$	-0.005	+0.005	
Angular resolution (smeared by 0.009)	± 0	.011	
Sub-total	+0.050	-0.050	
Total	+0.174	-0.116	
Total	+20%	-14%	

June 1, 2007

L. Whitehead, NuInt07

Summary of Systematic Errors

source of systematic	er	or	en	°Oľ	eri	or	en	or
MC statistics	+0.011	-0.011	+0.020	-0.020	+0.028	-0.028	+0.042	-0.042
Model effects								
M_A (CCQE) ± 0.1	+0.016	-0.017	+0.023	-0.022	+0.015	-0.016	+0.004	-0.013
Bodek/Yang Corr $\pm 30\%$	-0.027	+0.029	-0.020	+0.021	-0.017	+0.019	-0.013	+0.016
$N\pi$ weighting	± 0	.051	± 0	.051	± 0	.057	± 0	.067
Neutrino Flux	+0.007	-0.008	+0.014	-0.015	+0.024	-0.021	+0.057	-0.050
Sub-total	+0.061	-0.061	+0.061	-0.061	+0.066	-0.065	+0.089	-0.085
Nuclear effects								
π absorption $\pm 30\%$	+0.051	-0.052	+0.006	-0.006	+0.107	+0.011	+0.076	+0.004
π inelastic scattering $\pm 30\%$	+0.024	+0.028	+0.112	-0.115	+0.060	+0.092	+0.032	-0.129
proton rescattering ±10%	+0.027	+0.039	+0.030	-0.092	+0.067	-0.067	+0.048	-0.045
Fermi motion (\pm 5MeV/c)	± 0	.004	$\pm 0.$.001	$\pm 0.$.005	$\pm 0.$	018
Sub-total	+0.070	-0.052	+0.116	-0.147	+0.156	-0.005	+0.097	-0.138
Detector effects								
Cross talk $\pm 0.25\%$	+0.031	+0.033	+0.028	-0.058	+0.043	-0.039	+0.049	-0.032
PMT resolution $\pm 10\%$	+0.012	-0.006	+0.021	-0.004	+0.042	-0.019	+0.024	-0.018
Quenching constant ± 0.0023	+0.020	+0.001	-0.022	+0.021	+0.039	+0.022	-0.027	+0.002
Sub-total	+0.040	-0.006	+0.041	-0.062	+0.072	-0.043	+0.055	-0.046
Reconstruction effects								
Hit threshold $\pm 15\%$	± 0	.015	$\pm 0.$.036	± 0	.036	$\pm 0.$	067
Muon momemtum scale $\pm 2.7\%$	-0.035	+0.092	-0.116	+0.008	+0.088	-0.004	+0.225	-0.258
Angular resolution (smeared by 0.009)	± 0	.006	$\pm 0.$.008		.019	$\pm 0.$	
Sub-total	+0.093	-0.039	+0.038	-0.122	+0.097	-0.041	+0.263	-0.292
Total	+0.138	-0.090	+0.144	-0.211	+0.210	-0.093	+0.302	-0.340
Total	+32%	-21%	+21%	-31%	+27%	-12%	+45%	-50%

Summary of Systematic Errors

ſ	source of systematic	err	or	eri	or	err	or	err	or
ĺ	MC statistics	+0.015	-0.015	+0.031	-0.031	+0.044	-0.044	+0.066	-0.066
ן ב	Model effects								
2	M_A (CCQE) ± 0.1	+0.017	-0.018	+0.026	-0.026	+0.019	-0.018	-0.001	-0.013
	Bodek/Yang Corr $\pm 30\%$	-0.036	+0.038	-0.029	+0.032	-0.030	+0.032	-0.026	+0.029
	$\mathrm{N}\pi$ weighting	$\pm 0.$.066	± 0	.075	± 0	.088	± 0.	
ן נ	Neutrino Flux	+0.010	-0.011	+0.022	-0.021	+0.034	-0.033	+0.085	-0.077
5	Sub-total	+0.079	-0.078	+0.088	-0.087	+0.102	-0.100	+0.143	-0.138
5[Nuclear effects								
;	π absorption $\pm 30\%$	+0.059	-0.088	+0.022	+0.014	+0.189	-0.003	+0.148	+0.015
<u>,</u>	π inelastic scattering $\pm 30\%$	+0.023	+0.021	+0.186	-0.151	+0.050	+0.138	+0.043	-0.197
	proton rescattering $\pm 10\%$	+0.018	+0.062	+0.084	-0.143	-0.028	+0.114	+0.112	-0.087
)	Fermi motion (\pm 5MeV/c)	$\pm 0.$	005	$\pm 0.$.005	$\pm 0.$.007	± 0.	
į [Sub-total	+0.089	-0.088	+0.205	-0.208	+0.260	-0.029	+0.193	-0.218
: [Detector effects								
	Cross talk $\pm 0.25\%$	+0.020	+0.033	+0.032	-0.080	+0.082	-0.051	+0.074	-0.058
	PMT resolution $\pm 10\%$	+0.009	-0.010	+0.035	-0.002	+0.054	-0.032	+0.037	-0.029
	Quenching constant ± 0.0023	+0.025	-0.007	-0.024	+0.031	+0.058	+0.045	-0.025	-0.011
	Sub-total	+0.042	-0.012	+0.057	-0.084	+0.114	-0.060	+0.083	-0.069
ſ	Reconstruction effects								
	Hit threshold $\pm 15\%$	$\pm 0.$	020	± 0	.046	$\pm 0.$.054	± 0.	109
	Muon momentum scale $\pm 2.7\%$	-0.048	+0.111	-0.183	+0.042	+0.107	+0.013	+0.344	-0.396
	Angular resolution (smeared by 0.009)	$\pm 0.$	021	$\pm 0.$.025	± 0	.042	$\pm 0.$	
[Sub-total	+0.115	-0.056	+0.067	-0.190	+0.127	-0.068	+0.421	-0.464
[Total		-0.132	+0.242	-0.308	+0.330	-0.145	+0.496	-0.540
-	Total	+33%	-25%	+25%	-32%	+28%	-12%	+44%	-48%

Inclusive cross section ratio

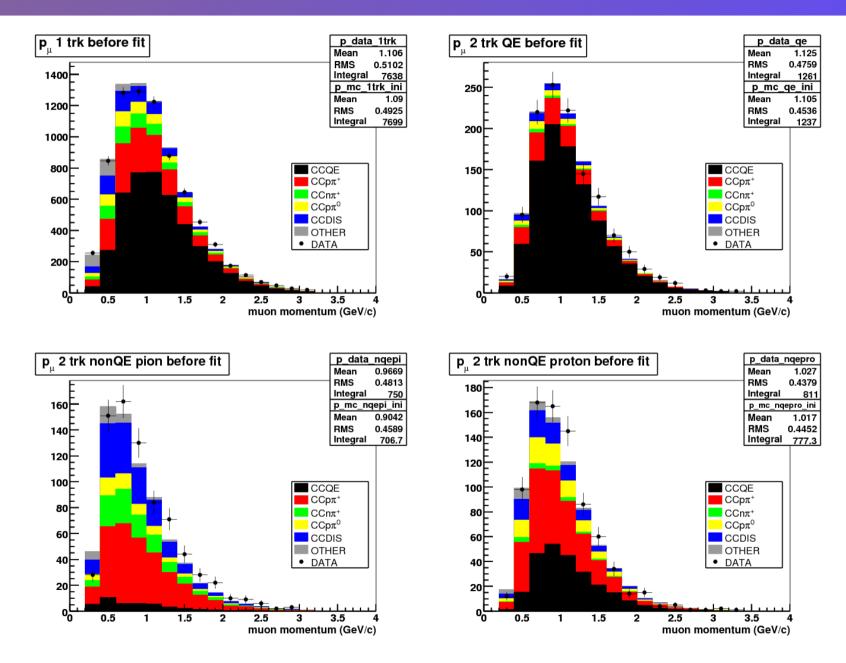
Migration Matrix

EXCLUSIVE (CCpπ⁺)

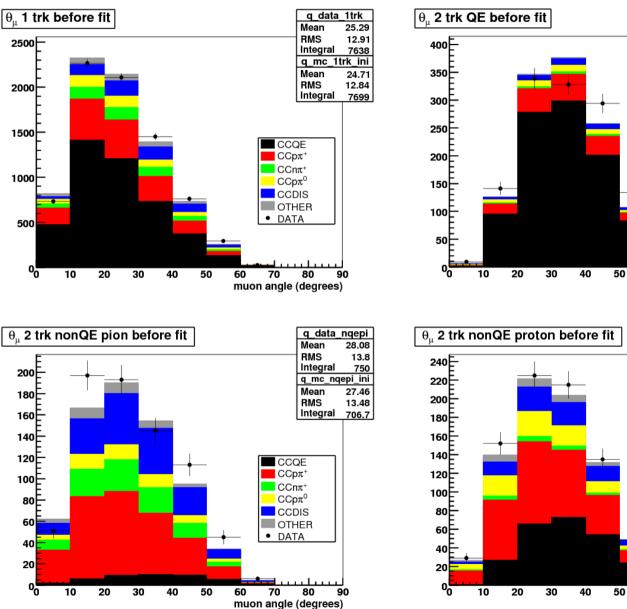
 $\begin{array}{c} 0.277 \pm 0.003 & 0.051 \pm 0.000 \\ \hline 0.723 \pm 0.007 & 0.949 \pm 0.003 \end{array}$

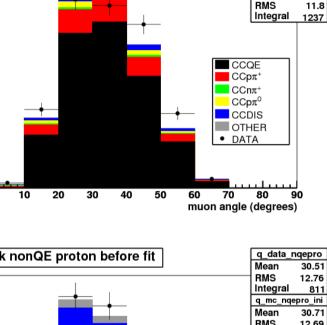
(0.212 ± 0.003	0.120 ± 0.002	0.055 ± 0.002	0.033 ± 0.002	0.011 ± 0.000
	0.025 ± 0.001	0.142 ± 0.002	0.083 ± 0.002	0.024 ± 0.001	0.015 ± 0.000
	0.001 ± 0.000	0.022 ± 0.001	0.144 ± 0.003	0.082 ± 0.003	0.016 ± 0.000
	0.000 ± 0.000	0.001 ± 0.000	0.016 ± 0.001	0.160 ± 0.004	0.011 ± 0.000
$\left(\right)$	0.763 ± 0.007	0.715 ± 0.007	0.702 ± 0.007	0.701 ± 0.010	0.948 ± 0.003 /

INCLUSIVE (CCpπ⁺)


 $\begin{pmatrix} 0.250 \pm 0.003 & 0.051 \pm 0.000 \\ 0.750 \pm 0.007 & 0.949 \pm 0.003 \end{pmatrix}$

/	0.203 ± 0.003	0.124 ± 0.002	0.069 ± 0.002	0.038 ± 0.002	0.011 ± 0.000	1
	0.023 ± 0.001	0.124 ± 0.002	0.081 ± 0.002	0.032 ± 0.001	0.015 ± 0.000	
	0.001 ± 0.000	0.019 ± 0.001	0.117 ± 0.002	0.079 ± 0.002	0.016 ± 0.000	
	0.000 ± 0.000	0.001 ± 0.000	0.012 ± 0.001	0.130 ± 0.003	0.011 ± 0.000	
	0.773 ± 0.007	0.732 ± 0.006	0.721 ± 0.006	0.721 ± 0.009	0.948 ± 0.003	J


(matrix elements are normalized by e.g., $e_{\pi}^{CC1\pi^+} + e_{QE}^{CC1\pi^+} = e^{CC1\pi^+}$ so that columns sum to 1)


- /						
Sample	CCQE	$CCp\pi^+$	$CCn\pi^+$	$CC1\pi^0$	CC DIS	Other
Fiducial Volume	32	18	6	5	9	30
MRD	52	22	6	6	9	5
1-track	57	20	6	6	8	3
2-track QE	78	13	1	3	4	1
2-track nonQE pion	6	41	15	8	24	6
2-track nonQE proton	32	38	3	12	12	3

Data and Nominal MC µ Momentum

Data and Nominal MC µ Angle

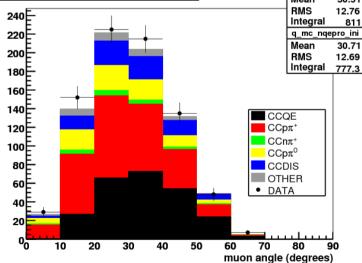
g data ge

q mc qe ini

34.7

12.46

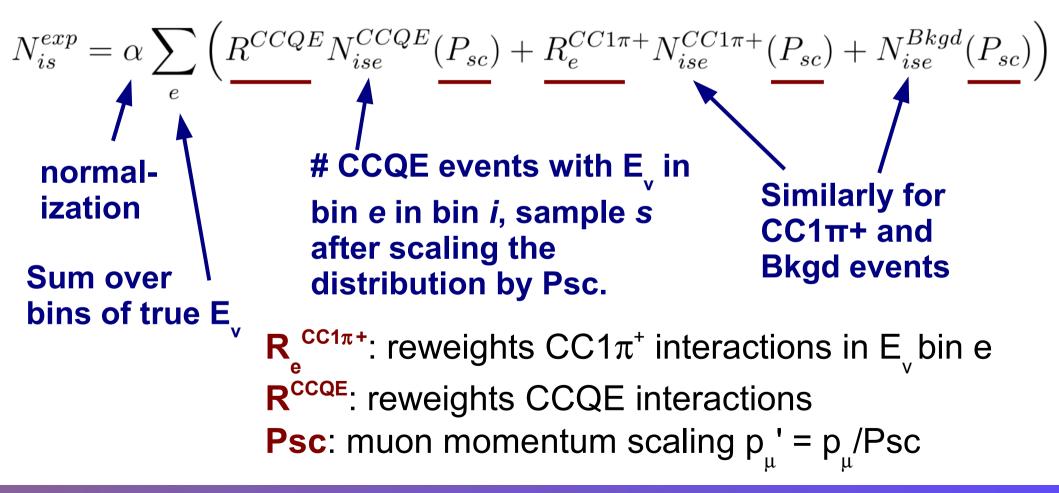
1261


34.17

Mean

RMS

Mean


Integral

Cross-Check Analysis

$$F = 2\sum_{is} \left[N_{is}^{exp} - N_{is}^{obs} + N_{is}^{obs} \ln \frac{N_{is}^{obs}}{N_{is}^{exp}} \right]$$

N^{exp} is a function of the **nominal MC** and the **fitting parameters**.

Cross-Check Analysis Results

Energy Range	Cross Section Ratio
$({ m GeV})$	$R_e = \frac{\sigma_e^{CC1\pi^+}}{\sigma_e^{CCQE}}$
>0.00	$0.735 \pm 0.194 (\text{fit})^{+0.076}_{-0.103} (\text{nucl})^{+0.078}_{-0.073} (\text{syst})$
$\begin{array}{c} 0.00\text{-}1.35 \\ 1.35\text{-}1.72 \\ 1.72\text{-}2.22 \\ > 2.22 \end{array}$	$\begin{array}{c} 0.403 \pm 0.173 (\mathrm{fit})^{+0.087}_{-0.072} (\mathrm{nucl})^{+0.128}_{-0.093} (\mathrm{syst}) \\ 1.023 \pm 0.281 (\mathrm{fit})^{+0.072}_{-0.217} (\mathrm{nucl})^{+0.107}_{-0.141} (\mathrm{syst}) \\ 1.006 \pm 0.334 (\mathrm{fit})^{+0.210}_{-0.064} (\mathrm{nucl})^{+0.245}_{-0.170} (\mathrm{syst}) \\ 1.444 \pm 0.470 (\mathrm{fit})^{+0.207}_{-0.285} (\mathrm{nucl})^{+0.332}_{-0.462} (\mathrm{syst}) \end{array}$

Energy Range	Cross Section Ratio
$({ m GeV})$	$R_e = \frac{\sigma_e^{CCp\pi^+}}{\sigma_e^{CCQE}}$
>0.00	$0.556 \pm 0.145 (\text{fit})^{+0.079}_{-0.072} (\text{nucl})^{+0.086}_{-0.106} (\text{syst})$
$\begin{array}{c} 0.00\text{-}1.35 \\ 1.35\text{-}1.72 \\ 1.72\text{-}2.22 \\ > 2.22 \end{array}$	$\begin{array}{c} 0.331 \pm 0.151 (\mathrm{fit})^{+0.113}_{-0.035} (\mathrm{nucl})^{+0.092}_{-0.097} (\mathrm{syst}) \\ 0.760 \pm 0.206 (\mathrm{fit})^{+0.068}_{-0.160} (\mathrm{nucl})^{+0.102}_{-0.170} (\mathrm{syst}) \\ 0.711 \pm 0.238 (\mathrm{fit})^{+0.182}_{-0.021} (\mathrm{nucl})^{+0.206}_{-0.158} (\mathrm{syst}) \\ 0.846 \pm 0.319 (\mathrm{fit})^{+0.185}_{-0.097} (\mathrm{nucl})^{+0.303}_{-0.410} (\mathrm{syst}) \end{array}$

INCLUSIVE (CC1π⁺)

EXCLUSIVE (CCpπ⁺)

Scaling

Polystyrene (C_8H_8) has 56 protons and 48 neutrons. Need to know the factor by which we can scale the result down to take this into account.

Inclusive ratio:

$$\frac{\sigma(\nu p \to \mu^{-} p \pi^{+}) + \sigma(\nu n \to \mu^{-} n \pi^{+})}{\sigma(\nu n \to \mu^{-} p)} = f \times \frac{\sigma(\nu(C_{8}H_{8}) \to \mu^{-} p \pi^{+}) + \sigma(\nu(C_{8}H_{8}) \to \mu^{-} n \pi^{+})}{\sigma(\nu(C_{8}H_{8}) \to \mu^{-} p \pi^{+}) + \sigma(\nu(C_{8}H_{8}) \to \mu^{-} n \pi^{+})} \qquad f = (48/56)S_{p} + S_{n}$$

$$S_{n} \equiv \frac{\sigma(\nu(C_{8}H_{8}) \to \mu^{-} p \pi^{+}) + \sigma(\nu(C_{8}H_{8}) \to \mu^{-} n \pi^{+})}{\sigma(\nu(C_{8}H_{8}) \to \mu^{-} p \pi^{+}) + \sigma(\nu(C_{8}H_{8}) \to \mu^{-} n \pi^{+})} \qquad f = 0.9$$

Exclusive ratio:
$$R_{measured}(exc) = \frac{\sigma(\nu(C_8H_8) \to \mu^- p\pi^+)}{\sigma(\nu(C_8H_8) \to \mu^- p)} \qquad f = 6/7$$
$$= \frac{56\sigma(\nu p \to \mu^- p\pi^+)}{48\sigma(\nu n \to \mu^- p)}$$