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A Dimensional Regularization

In the intermediate stages of calculations we must introduce some regulariza-
tion procedure to control ultraviolet, soft and collinear divergences. The most
effective regulator is the method of dimensional regularization which continues
the dimension of space-time to d = 4 − 2ǫ dimensions. This method of regular-
ization has the advantage that the Ward Identities of the theory are preserved
at all stages of the calculation. Integrals over loop momenta are performed in d
dimensions with the help of the following formula,

∫

ddk

(2π)d

(−k2)r

[

− k2 + C − iε
]m =

i(4π)ǫ

16π2
[C − iε]

2+r−m−ǫ Γ(r + d/2)

Γ(d/2)

Γ(m − r − 2 + ǫ)

Γ(m)
. (A.1)

To demonstrate Eq. (A.1), we first perform a Wick rotation of the k0 contour
anti-clockwise. This is dictated by the iε prescription, since, for real C, the poles
coming from the denominator of Eq. (A.1) lie in the second and fourth quadrant
of the k0 complex plane as shown in Fig. 1. Thus by anti-clockwise rotation of
the contour of integration we encounter no poles. After rotation by an angle
π/2, the k0 integral runs along the imaginary axis in the k0 plane, (−i∞ <
k0 < i∞). In order to deal only with real quantities we make the substitution
k0 = iκd, kj = κj for all j 6= 0 and introduce |κ| =

√

κ2
1 + κ2

2 . . . + κ2
d. We

obtain a d-dimensional Euclidean integral which may be written as,
∫

ddκ f(κ2) =

∫

d|κ| f(κ2) |κ|d−1 sind−2 θd−1 sind−3 θd−2 . . .

× sin θ2 dθd−1dθd−2 . . . dθ2dθ1. (A.2)

The range of the angular integrals is 0 ≤ θi ≤ π except for 0 ≤ θ1 ≤ 2π.
Eq. (A.2) is best proved by induction. Assuming that it is true for an d-
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Figure 1: Wick rotation in the complex k0 plane

dimensional integral, in (d + 1) dimensions we can write,
∫

dd+1κ =

∫

dκd+1 ddκ (A.3)

=

∫

dκd+1 d|κ| |κ|d−1 sind−2 θd−1 sind−3 θd−2 . . . sin θ2 dθd−1dθd−2 . . . dθ2dθ1

(A.4)

The d-dimensional length, κ can be written in terms of the (d + 1)-dimensional
length, ρ

κd+1 = ρ cos θd

|κ| = ρ sin θd (A.5)

Changing variables to ρ and θd we recover the (d + 1)-dimensional version of
Eq. (A.2).

The angular integrations, which only give an overall factor, can be performed
using

∫ π

0

dθ sind θ =
√

π
Γ
(

(d+1)
2

)

Γ
(

(d+2)
2

) . (A.6)

We therefore find that the left hand side of Eq. (A.1) can be written as,

2i

(4π)d/2Γ
(

d/2
)

∫ ∞

0

d|κ| |κ|d+2r−1

[

κ2 + C
]m . (A.7)
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Γ(z) =
∫ ∞
0

dt e−ttz−1

zΓ(z) = Γ(z + 1)

Γ(2z) = 22z−1

√
π

Γ(z)Γ(z + 1
2 )

Γ(n + 1) = n! for n a positive integer

Γ(1) = 1, Γ(1
2 ) =

√
π

Γ ′(1) = −γE , γE ≈ 0.57721566

Γ ′′(1) = γ2
E + π2

6

B(a, b) =
∫ 1

0
dx xa−1(1 − x)b−1

B(a, b) =
∫ ∞
0

dt ta−1

(1+t)a+b for Re a, b > 0

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

Table 1: Useful properties of the Γ and related functions

This last integral can be reduced to a Beta function, (see Table 1)

∫ ∞

0

dx
xs

[

x2 + C
]m =

Γ
( (s+1)

2

)

2

Γ
(

m − s/2 − 1/2
)

Γ
(

m
) Cs/2+1/2−m (A.8)

which demonstrates Eq. (A.1).
Feynman parameter identities are also useful for calculating virtual dia-

grams. The general form is,

1

Aα Bβ · · ·Eǫ
=

Γ(α + β + · · · ǫ)
Γ(α)Γ(β) · · ·Γ(ǫ)

×
∫ 1

0

dx dy · · ·dz δ(1 − x − y · · · − z)

× xα−1 yβ−1 · · · zǫ−1

(Ax + By + · · · + Ez)α+β+···+ǫ
. (A.9)
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Figure 2: Diagrams for QCD corrections to the electromagnetic vertex

B QCD corrections to the electromagnetic ver-

tex

In this appendix we describe the calculation of the radiative corrections to the
electromagnetic vertex. This calculation, which describes the modification of the
interaction of a virtual photon with a quark due to strong interactions, is a good
illustration of the use of dimensional regularization to control both ultraviolet
and infra-red singularities. The appropriate graphs are shown in Fig. 2.

At lowest order the expression for the vertex, Fig 2(a), is

Γµ
(a)(p

′, p) = −ie ū(p′)γµu(p) (B.1)

In the dimensional regularization scheme, Figs. 2(c) and Figs. 2(d) give no
contribution. For massless, on-shell quarks the dimenensionally regularized in-
tegral vanishes

∫

ddk

k4
= 0 (B.2)

because there is no dimensionful scale to which the integral could be propor-
tional.

The calculation of vertex diagram, Fig 2(b), proceeds as follows. Using the
Feynman rules (in the Feynman gauge (λ = 1)) we have,

Γµ
(b)(p

′, p) = −i3(−ig)2(−ie)

∫

ddl

(2π)d

ū(p′)γδtD(6l + 6p′)γµ(6l + 6p)γδt
Du(p)

((l + p′)2 + iε)((l + p)2 + iε)(l2 + iε)
(B.3)

Collecting terms and applying the color rule tDtD = CF I we get

Γµ
(b)(p

′, p) = −eg2CF

∫

ddl

(2π)d

ū(p′)γδ(6l + 6p′)γµ(6l + 6p)γδu(p)

((l + p′)2 + iε)((l + p)2 + iε)(l2 + iε)
(B.4)

Notice the divergence structure of this expression. For large l the integral is
logarithmically ultraviolet divergent.

Γµ
(b)(p

′, p) → −eg2CF

∫

ddl

(2π)d

ū(p′)γδ 6lγµ6lγδu(p)

(l2 + iε)3
. (B.5)
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For small l (the soft region) the integral is also divergent

Γµ
(b)(p

′, p) → −eg2CF

∫

ddl

(2π)d

4p · p′ ū(p′)γµu(p)

(2l · p′ + iε)(2l · p + iε)(l2 + iε)
. (B.6)

In deriving this result we have used the commutation relation

6aγδ + γδ 6a = 2aδ (B.7)

to commute the momenta to positions where they can act on the spinors and
use the equation of motion for massless free particles. The integral thus has
ultraviolet and infra-red divergences.

Returning to the full expression, Eq. (B.4), it proves useful to introduce
Feynman parameters

1

ABC
= 2

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγ
δ(1 − α − β − γ)

[

αA + βB + γC
]3 . (B.8)

So the expression in Eq. (B.4) becomes

Γµ
(b)(p

′, p) = −2eg2CF

∫

ddl

(2π)d

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγ δ(1 − α − β − γ)

× ū(p′)γδ(6l + 6p′)γµ(6l + 6p)γδu(p)
[

l2 + 2αp · l + 2βp′ · l + iε
]3

(B.9)

We now perform the shift l = l′ + αp + βp′ so that the expression becomes

Γµ
(b)(p

′, p) = −2eg2CF

∫

ddl

(2π)d

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγ
δ(1 − α − β − γ) Nµ

[

l′ 2 + αβq2 + iε
]3(B.10)

where the numerator is

Nµ = ū(p′)γδ(6l′ + (1 − β)6p′ − α6p)γµ(6l′ + (1 − α)6p − β 6p′)γδu(p) (B.11)

and q = p′ − p. Terms odd in l′ can be dropped so that the numerator becomes

Nµ = ū(p′)γδ 6l′γµ6l′γδu(p) + ū(p′)γδ((1 − β)6p′ − α6p)γµ((1 − α)6p − β 6p′)γδu(p)
(B.12)

Using l′µl′ν = gµν l′ 2/n and γβγαγβ = −2(1− ǫ)γα, the first term in the numer-
ator can be simplified to give,

Nµ
(1) =

4 (1 − ǫ)2

n
l′ 2 ū(p′)γδu(p) . (B.13)

The second term in the numerator can also be simplified by using the equations
of motion

ū(p′) 6p′ = 0, 6p u(p) = 0. (B.14)
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to give
Nµ

(2) = 4 p · p′ (1 − α)(1 − β) ū(p′)γµu(p) . (B.15)

At first sight the term
+αβ ū(p′)γδ 6pγµ6p′γδu(p) (B.16)

might appear to give a contribution, but since it is free from IR divergences it
can be evaluated in four dimensions and hence vanishes using the equation of
motion. The l′ integral can easily be performed using Eq. (A.1)

Γµ
(b)(p

′, p) = −ie ū(p′)γµu(p)
g2CF

16π2

(4πµ2

−q2

)ǫ

Γ(1 + ǫ)

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγ

× δ(1 − α − β − γ)
[

2
(1 − ǫ)2

ǫ
(αβ)−ǫ − 2(1 − α)(1 − β)(αβ)−1−ǫ

]

(B.17)

The integrals can be performed using the results in Table 1,

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγ δ(1 − α − β − γ)
(1 − α)(1 − β)

(αβ)1+ǫ
=

Γ(1 − ǫ)2

Γ(2 − 2ǫ)

[ 1

ǫ2
+

1

2(1 − ǫ)

]

∫ 1

0

dα

∫ 1

0

dβ

∫ 1

0

dγ δ(1 − α − β − γ) (αβ)−ǫ =
1

2(1 − ǫ)

Γ(1 − ǫ)2

Γ(2 − 2ǫ)
(B.18)

Using the identity

Γ(1 + ǫ)Γ(1 − ǫ)2

Γ(1 − 2ǫ)
=

1

Γ(1 − ǫ)
+ O(ǫ3) (B.19)

Collecting terms we may write the final answer for the lowest order term plus
the radiative correction as,

Γµ(p′, p) = −ieū(p′)γµu(p)
{

1+
g2CF

16π2Γ(1 − ǫ)

( 4πµ2

−q2 − iε

)ǫ[

− 2

ǫ2
− 3

ǫ
−8+O(ǫ)

]}

(B.20)
Notice that for q2 negative the result is real. For q2 > 0 there is a branch cut
extending from q2 = 0 to q2 = ∞. The path around the cut is indicated by the
symbol ε.
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