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Tasks for today

• Understand general features of higher order calculations.

• infrared singularities and calculational framework.

• Investigate improvements to parton shower predictions.

• matching/merging and including higher orders.

• Discuss other pertinent breakthroughs.

• jets at hadron colliders.
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General structure: NLO

• We have seen some of the motivation for computing cross sections beyond 
leading order. We’ll now look at some of the details.

• In the DGLAP evolution we already saw that radiating a gluon contributes in 
two ways. Example: W production (Drell-Yan process).

• Contribute at the same order in the strong coupling:
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additional radiation 
present in the final state

additional radiation emitted 
and reabsorbed internally

“real radiation”

“virtual” or “1-loop” diagrams

|MW+g|2 ∼ (gs)2 , (MW,1−loop × MW,tree) ∼ g2
s × 1
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Real radiation

• We already know that the real radiation contribution suffers from infrared 
singularities. This time we will regularize them with dimensional regularization.

• In our discussion of factorization in the small angle approximation we had:

• Moving from 4 to 4-2ε dimensions we pick up some extra factors that we can 
again write in terms of t and z:

• Hence our new factorization is:

• NB: in contrast to regularization of UV-divergent loop integrals, need ε<0 here. 
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Pole structure

• Schematically, we can see the structure that will emerge.

• Unlike the case of parton branching, we cannot simply treat the radiation from 
the quark and the antiquark separately. In our case:
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universal pole structure

∫
dt

t1+ε
→ 1

ε
collinear pole

∫
dz(1− z)−ε

(
1

1− z

)
→ 1

ε

factor present in, for example, Pqq and Pgg

additional pole from soft behavior

dσW+g =
(

2
ε2

+
3
ε
− 2

ε
Pqq +O(ε0)

)
dσW,tree

soft collinear
initial state: absorbed into pdf
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Virtual corrections

• We know that the remaining poles
must cancel in the end (KLN theorem)
so now turn to the virtual (loop)
corrections.

• Only one diagram to calculate in
the end (self-energy corrections
on massless lines are zero in
dim. reg.).

• General structure of amplitude is:

                                                                   with Dirac structure in numerator:

• Difficult part is performing the integral over the loop momentum. First we’ll 
inspect the integrand.
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∫
d4−2ε! N

!2(! + pd̄)2(! + pd̄ + pu)2

N = [ū(pd̄)γ
α !"γµ(!" + !pd̄ + !pu)γαu(pu)]Vµ(pW ) .
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Infrared singularities

• Inspection of the denominators reveals the now-familiar problems. They are 
best seen by shifting the loop momentum:

• There is a soft singularity as ℓ → 0 and two collinear singularities, when ℓ is 
proportional to either of the external momenta.

• These will again be handled by dim. reg., which is already being used anyway 
to handle the UV singularity (two powers of ℓ) - not to mention on the real side.

• Just as in the real radiation case, these singularities will be proportional to 
tree-level matrix elements.

• In our case (and in general) the procedure is greatly complicated by the Dirac 
structure in the numerator.

• as a simple case, consider the case with no numerator (“scalar integral”).
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!2(! + pd̄)
2(! + pd̄ + pu)2 −→ !2(!− pd̄)

2(! + pu)2 [!→ !− pd̄]
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Quick calculation

• The normal method is to combine the denominators with Feynman parameters 
(x1, x2, x3 here) and shift the loop momentum:

• Evaluate this using the identity:

• Obtain:
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soft singularity exposed
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W production: final result

• Since this is a simple calculation, this method can actually used to perform the 
entire calculation;

• loop shift in numerator gives different Feynman parameter integrals.

• in general, we need to do more work.

• A detailed account of the full calculation can be found online:
                         See notes by Keith Ellis on Indico web-page

• Here, I’ll just draw attention to the pertinent features:

• The poles are proportional to the tree level contribution and are equal and 
opposite to those from the real contribution. Their sum is therefore finite.

• In this case the finite term is also proportional to the tree-level result.

• this is not true in general: it is process-specific and hard to calculate.
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dσW,1−loop =
(
− 2

ε2
− 3

ε
+ finite

)
dσW,tree
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W+ cross sections at LO and NLO

• Numerical results at LO and NLO, Tevatron and two LHC energies,
setting µR=µF and varying about MW  (pdf set: MSTW08).

• LO: cross section depends only on µF (but on both at NLO).
• mostly independent of scale at Tevatron; this is because typical x ~ 0.05, in 

the region of no scaling violations (c.f. earlier HERA data).
• Behavior of the theoretical predictions quite different at the two machines.
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Tevatron LHC (7 TeV) LHC (14 TeV)

LO
NLO



Quantum Chromodynamics - John Campbell -

More complicated NLO calculations

• In general the method outlined here does not scale to complex final states. 
Briefly mention two of the issues here.

• Computing the relevant loop integrals with more particles in the final state 
generates very complicated and length expressions.

• this has led to a revolution in the way that virtual amplitudes are computed. 
Nowadays, most new calculations rely on either a numerical or analytical 
implementation of unitarity techniques.

• these rely on sewing together tree level diagrams and replacing integrals 
with algebraic manipulations.

• analytic methods yield compact results; numerical methods allow 
calculations of unprecedented difficulty (e.g. W+4 jets from earlier)

• Although the infrared pole structure of the real radiation contribution is known, 
the phase space integrals cannot actually be performed analytically.

• we need a way to extract the poles to cancel with the 1-loop diagrams, so 
that the remainder of the integrals can be performed numerically.
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Real radiation: toy model

• There are two methods that are widely used in existing NLO calculations. They 
both rely on the fact that, in the singular regions, both the phase-space and 
the matrix elements factorize against universal functions.

• these are called phase space slicing and subtraction methods.

• Briefly demonstrate the features of each with reference to a toy model:

• M(x) represents the real matrix elements, with M(0) the lowest order.

• We know that this toy model exhibits the correct features of the soft and 
collinear limits in dimensional regularization.
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I =
∫ 1

0

dx

x
x−εM(x)
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Phase space slicing

• In the slicing approach, an additional theoretical parameter (δ) is introduced 
which is used to define the singular region. Close to the singular region, the 
matrix elements are approximated by the leading order ones. 

• In our toy model, this means choosing δ≪1 and approximating M(x) by
M(0) when x<δ.

• In that case we can split the integral into two regions thus:

• The final result should be independent of δ, via an implicit cancellation of 
logarithms between the exposed log and the lower limit of the integral.
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I =M(0)
∫ δ

0

dx

x
x−ε +

∫ 1

δ

dx

x
x−εM(x)

= −1
ε
δ−εM(0) +

∫ 1

δ

dx

x
M(x)

=
(
−1

ε
+ log δ

)
M(0) +

∫ 1

δ

dx

x
M(x)

isolated singularity finite, ready to be integrated numerically
︸ ︷︷ ︸

Giele, Glover and Kosower, 1980;
Keller and Laenen, 1999;
Harris and Owens, 2002.
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Slicing: example

• Tension between retaining a good soft/collinear approximation (wanting small 
δ) and reducing numerical-log cancellations (large δ).

• Example: Wbb production
(with massive b-quarks).

• Actually uses two cutoffs,
one for soft (δs) and one
for collinear (δc)
singularities.
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Febres Cordero, Reina, 
Wackeroth (2006)
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Subtraction

• Subtract from the integrand, in each singular region, a local counterterm with 
exactly the same singular behaviour.

• In the toy model the counterterm is obvious:

• Although apparently straightforward, there are still shortcomings.

• For numerical stability still need a cutoff in practise, since it is impractical to 
integrate the subtracted singularity completely (to zero, in our toy example).

• In addition, the trick here is to construct the singular terms in such a manner 
that they are both universal and readily integrated analytically.

• Such a formulation is provided by the dipole subtraction procedure.
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Ellis, Ross and Terrano, 1981
Catani and Seymour, 2002

I =
∫ 1

0

dx

x
x−ε [M(x)−M(0)] +M(0)

∫ 1

0

dx

x
x−ε

=
∫ 1

0

dx

x
[M(x)−M(0)]− 1

ε
M(0)

isolated singularitysuitable for numerical integration
︸ ︷︷ ︸
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Infrared safety

• After isolating the divergent terms from the real contribution, the cancellation 
of them against the virtual contributions is very delicate.

• It relies on the fact that both types of event should have the same number of 
jets in the final state.

• This can be a problem in some jet algorithms, which are the means by which 
calorimeter towers (partons) are combined into jets.
• an algorithm is called infrared unsafe when the addition of a soft particle 

changes the configuration of jets found by the algorithm.

16



Quantum Chromodynamics - John Campbell -

Infrared unsafety

• On the theory side, higher order calculations cannot be used in situations (a 
combination of algorithm and observable) which are infrared unsafe.

• In the interpretation of experimental data (or in a parton shower) such 
singularities of course do not occur

• however, they are replaced by large logarithms in an (almost certainly) 
unpredictable way - due to details of the detector (or parton shower).

• As a result, comparisons between different experiments and with higher order 
theoretical predictions can become difficult.

• Typical jet algorithms used at the Tevatron (e.g. cone, midpoint cone, JetClu) 
do indeed suffer from infrared unsafety.

• but often only for large numbers of jets (not so common at the Tevatron).

• Solution for the LHC: use infrared and collinear safe algorithms from the start.

• now possible thanks to a new generation of jet algorithms.
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Excellent, comprehensive review: Salam, arXiv:0906.1833
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Jet algorithms for the LHC

• Two algorithms of most importance:

• Traditionally, cone algorithms have advantages when analyzing data while the 
kT algorithm (to which anti-kT is closely related) has better theoretical properties.

• with advent of SISCone and anti-kT, they are now on a more even footing.
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SISCone         Salam and Soyez (2007)

anti-kT             Cacciari, Salam and Soyez (2008); Delsart
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General structure of NLO

• In general: many subtractions (“counter-events”) for each real radiation event.

• Common parton level NLO programs:
MCFM, NLOJET++, Blackhat, Rocket, HELAC-1loop.

19

+
real 

radiation virtual 
radiation 

(loop)

-
counter-

terms +
counter-

terms

soft/collinear singularities 
cancelled numerically

singularities cancelled 
analytically
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Other features of NLO

20

• Compared to LO (without a shower)
 additional benefits include:

• exposure to wider range of
initial states;

• sensitivity to final state features
such as details of jet algorithm;

• extended kinematic range.

• Major disadvantages:

• while calculating LO cross sections 
is a solved problem, only very 
recently have we had NLO 
calculations beyond 2→3 processes.

• without using a shower, no exclusive
hadron-level predictions (just 
partons).

NLO prediction 
unreliable here

LO
NLO

tree, 1-loop, subtractions

real radiation
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Beyond NLO: next-to-next-to-leading order

• We’ve already seen how the scale dependence is expected to be reduced even 
further at the next order of perturbation theory.

• can expect real precision from the theoretical prediction (“few percent”).

• The normalization of a cross section begins to be trustworthy at NLO, but the 
theoretical uncertainty associated with it is only reasonably estimated at NNLO.

• In addition, many of the arguments for NLO apply again at NNLO - e.g. even 
more sensitivity to jet algorithms, still larger phase space, etc.

• The ingredients for a NNLO calculation are similar to, but more complicated 
than, those that enter at NLO.

• as a result, relatively few predictions at this order yet:
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 Drell-Yan, Higgs (gluon fusion and WBF)

2- and 3-jet production

hadron colliders

lepton colliders
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NNLO complexity

• Example: 3-jet production in
e+e- annihilation.

(a) 2-loop virtual diagrams.

(b) 1-loop squared.

(c) interference of 1-loop and 
tree, both with extra parton
→ infrared singularities (easy)

(d) tree with two extra partons
→ [infrared singularities]2

• At present, no universal procedure 
(like dipole subtraction) formulated.
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4 types of 
contribution

• One way to envision the different NNLO contributions is to consider all 
possible cuts of a 3-loop diagram.



Quantum Chromodynamics - John Campbell -

Example: NNLO vs. data

23

NNLO 
calculation:

Anastasiou, 
Dixon, Melnikov, 
Petriello (2003).
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Higher orders: practical advice

• Orders of calculation populate different jet bins at differing orders of accuracy.
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• When moving beyond normalizing 
a total cross section, better to 
think of order of observable rather 
than calculation.

LO N-jet
calculation

NLO N-jet

NNLO N-jet

N-jet kinematics (N+1)-jet (N+2)-jet

LO

NLO

NNLO

ballpark

trustworthy

precision
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Improving parton showers

• We know that the parton shower approach we developed earlier suffers from 
the approximation that all additional radiation is soft or collinear.

• Solution: include more exact matrix elements as initial hard scatters.

• Avoid double counting
→ ME matching/merging.

• Many different universal
schemes for doing this,
e.g. MLM, CKKW,
ME&TS (“matrix element
+truncated shower”)
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hard final 
state + + + ...

+ ...

+ + ...
hard final 

state

hard final 
stateBuilt in to Alpgen, Sherpa
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Comparison of merging techniques
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TevatronAlwall et al. (2007)



Quantum Chromodynamics - John Campbell -

Limits of LO+parton shower

• Even after adding additional hard radiation onto a parton shower, overall 
normalization of cross section remains a leading order estimate

• usual disadvantages, such as sensitivity to scale choices.

• Natural question: can one add a parton shower on top of NLO?

• obtain NLO accuracy, but exclusive hadron-level predictions.

• Obvious problem:

• NLO already includes one extra parton emission.

• the hard part of this can be matched as before.

• the soft/collinear part contains singularities that must be extracted in a 
particular way (e.g. subtraction). How can that be combined with a shower?

• Solution: generate the subtraction terms from the shower.

• simplest implementation is process-dependent and still complicated.
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Schematic: NLO+parton shower
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+
real 

radiation virtual 
radiation 

(loop)

-
counter-

terms +
counter-

terms

NLO

hard final 
state + + + ...

parton shower

problematic 
overlap
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NLO + PS: MC@NLO

• First real matching of a parton shower (HERWIG) onto a NLO calculation.

29

Frixione and 
Webber (2003)

transverse 
momentum of 
top pairs, from 

MC@NLO
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NLO + PS: POWHEG

• More recent implementation, promising simpler procedure through which to 
incorporate parton-level NLO calculations.

•  Shower not fixed by the implementation, so any can be used.

30

Oleari et al. (2010)

transverse 
momentum of 

leading jet in Z+X, 
from POWHEG

Merging between Z 
and Z+jet samples
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Parton shower vs. higher order: quandaries

• At present there is no implementation of a NLO parton shower that considers 
hadron collider processes with two or more jets in the final state, nor a
NNLO+parton shower tool at all.

• how do we best use N(NLO) information when no NLO+PS is available?

• Some possible options:
 Use higher orders for overall inclusive normalization only
✔ simple to implement, defensible theoretically
✘ misses potentially important shape and/or kinematic information

 Split events into jet bins and normalize by best prediction in each bin
✔ simple, uses best information, defensible
✘ as above + sum of bin cross sections is not a well-defined quantity

 Pick an important distribution and reweight shower to reproduce NLO
✔ relatively simple
✘ throws away some PS shower information; other distributions okay?
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Recap

• Next-to-leading order calculations include virtual and real radiation diagrams

• each set contains infrared singularities that cancel in the sum

• in order to realise this cancellation, the singularities are usually isolated by a 
subtraction or slicing procedure (→ additional types of “event”)

• predictions are available for many processes through a number of different 
codes; current limit of complexity is 5 particles in the final state.

• NNLO has more contributions, but similar features

• no universal scheme for handling IR issues, single particle final states only

• Two (mostly) orthogonal directions for improving parton showers

• include more hard matrix elements to seed the shower, need to worry about 
matching event samples properly

• improve accuracy from LO to NLO; a much more difficult problem (no 
universal solution) but solutions available for a select no. of processes.
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