

Search for long-lived particles at CMS

Jie Chen
Florida State University
for the CMS Collaboration

Outline

- Brief introduction to long-lived particle
- Neutral long-lived particles
 - Search for displaced lepton pair CMS-PAS-EXO-11-004
 - Search for displaced photon CMS-PAS-EXO-11-067
- Heavy stable charged particles
 - Stopped gluino/stop search CMS-PAS-EXO-11-020
 - Slowly moving gluino/stop/stau/hyperk searches
 CMS-PAS-EXO-11-022
- Conclusions

Introduction

Long-lived massive particle

Neutral

- $\sim cm < \beta \gamma c\tau < detector scale: non-prompt decay to$
 - displaced leptons
 - displaced photon+X
 - displaced jets, top, W, Z.....
- βγcτ > detector scale: decay outside detector
 - MET, covered by SUSY/DM searches.

Charged

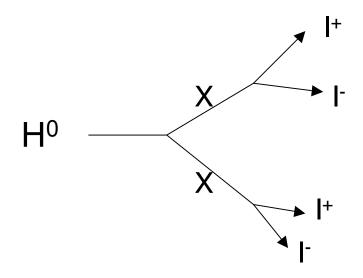
- $\sim cm < βγcτ < detector scale: kink/fork track$
- βγcτ >detector scale: decay outside detector or readout time window → Heavy Stable Charged Particle (HSCP)

Theoretical Motivation:

SUSY, Extra Dimension, Hidden Valley and other BSMs.

Neutral long-lived particles searches at CMS

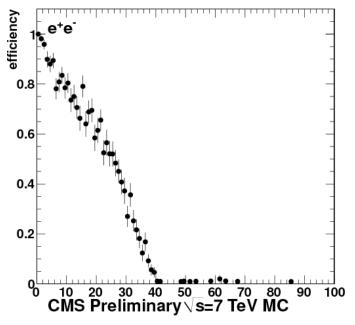
- -displaced leptons cms-pas-exo-11-004
- -displaced photon cms-pas-exo-11-067

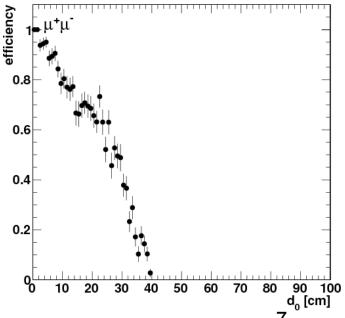


Model considered:

gg \rightarrow H⁰ \rightarrow 2X, X \rightarrow I⁺I⁻ X being long-lived spin 0 particle.

- Different Higgs (200-1000 GeV) and X boson (20-500 GeV) masses, with X boson lifetimes cτ=1.5-40 cm
- − Br(X → ee/ $\mu\mu$) is set to 50% each

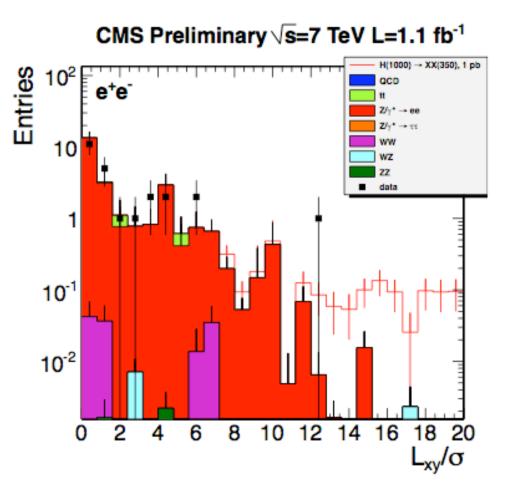

STATE CALLS

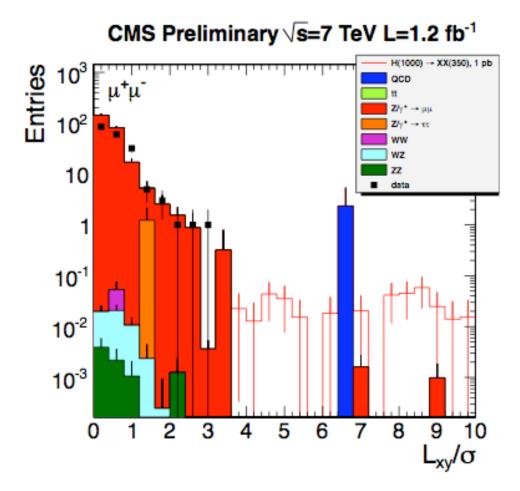

- Dataset: 1.1~1.2 fb⁻¹ from 2011 run
- Trigger: di- μ (e) each with $p_T>33(23)$ GeV
- Displaced track reco: seeding from SST stereo layers, can reconstruct tracks missing the primary vertex by nearly half a meter

Selection:

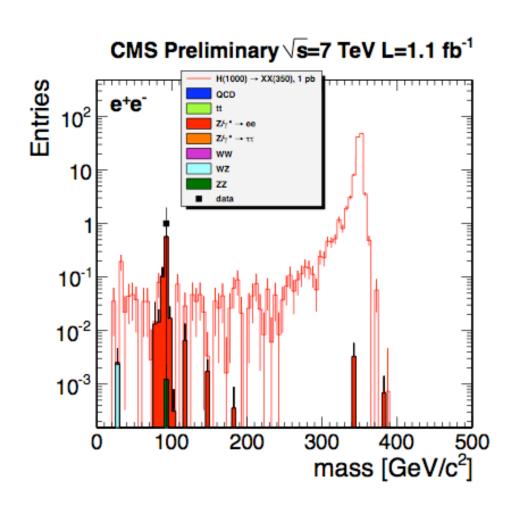
- primary vertex; isolated, high purity track
- opposite charged pair with well fitted common secondary vertex
- collinearity angle < 0.2(0.8) between dilepton total momentum and vector from primary to secondary vertex
- lepton-id: only trigger matching required

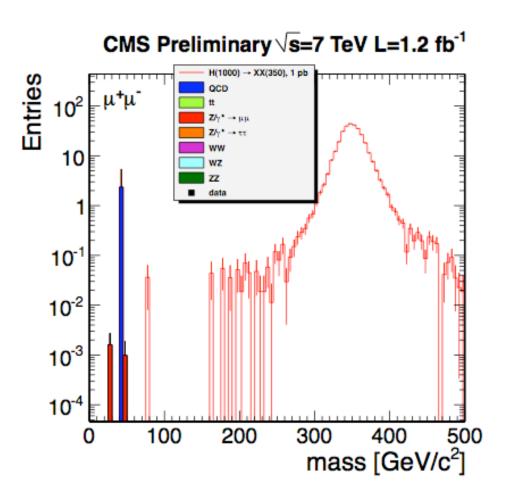
CMS Preliminary√s=7 TeV MC



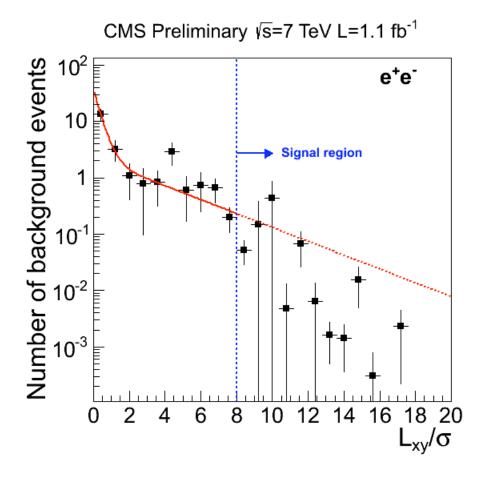


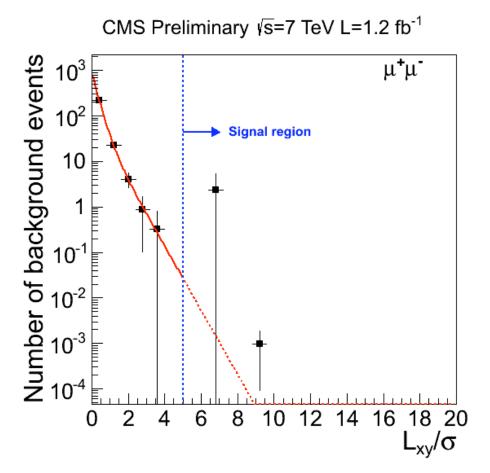
- Signal MC: H⁰→2X, X→I⁺I⁻
- Look for one or two displaced vertices from oppositely charged leptons, the vertex significance $(L_{xy}/\sigma) > 8(5)$ (e/ μ)



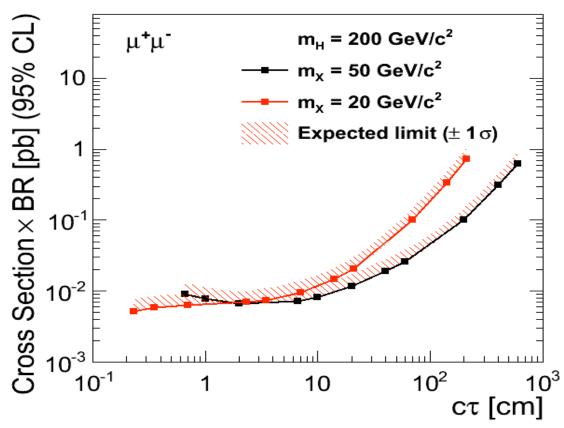


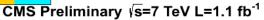
Reconstructed di-lepton mass

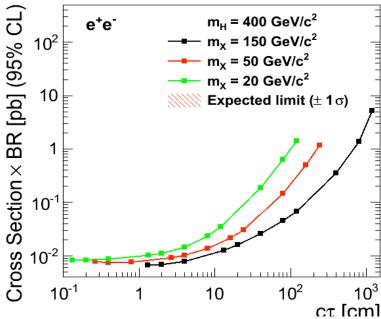


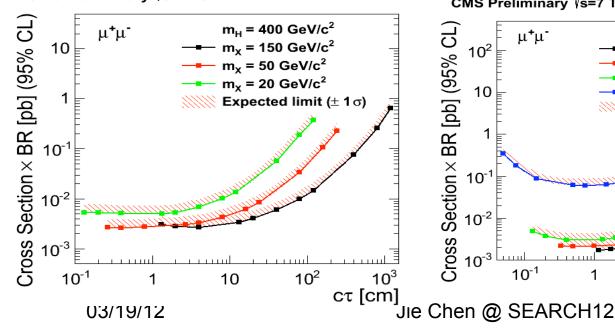


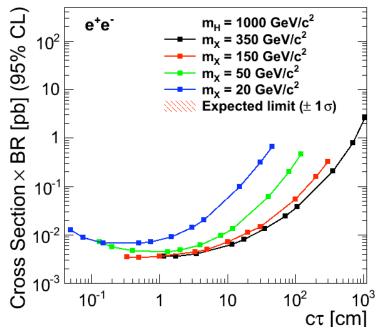
- Background is estimated with fit in control region of MC, extrapolating to signal region
- Difference to direct MC prediction as systematic

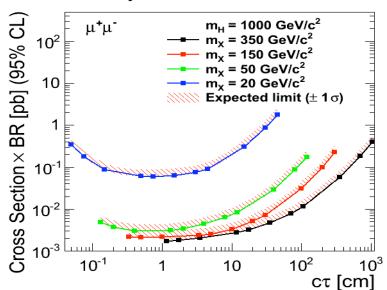



- For H⁰→2X, X→I⁺I⁻, selection efficiency
 - 20-30%(mu channel)
 - 10-20%(electron channel)
- Interpret 95% CL limits in mass of X boson for fixed H⁰ mass


CMS Preliminary √s=7 TeV L=1.2 fb⁻¹

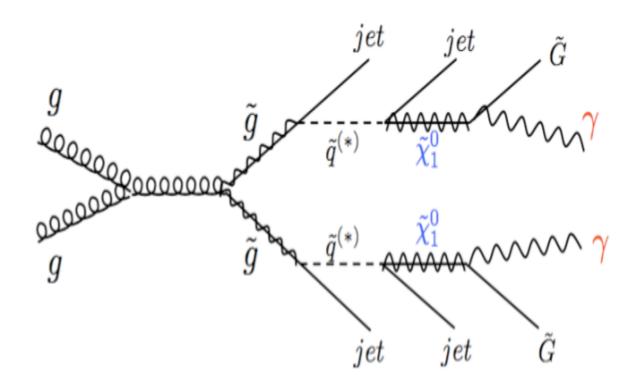





CMS Preliminary \(\sigma = 7\) TeV L=1.2 fb⁻¹

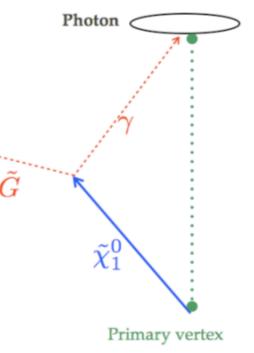
CMS Preliminary √s=7 TeV L=1.1 fb⁻¹

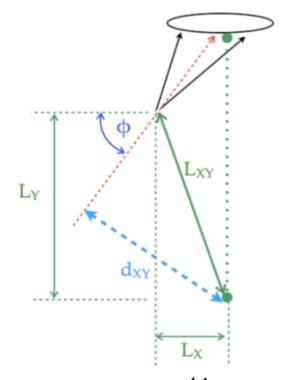
CMS Preliminary \s=7 TeV L=1.2 fb⁻¹



Limits for other H⁰ masses

- GMSB motivation
- Long-lived 140 GeV neutralino with 2cm <cτ< 25cm

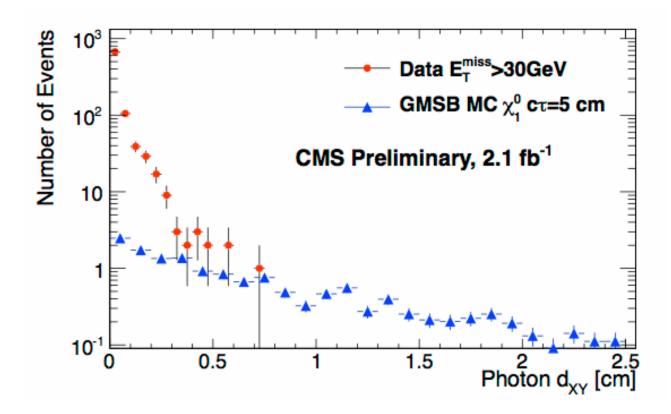




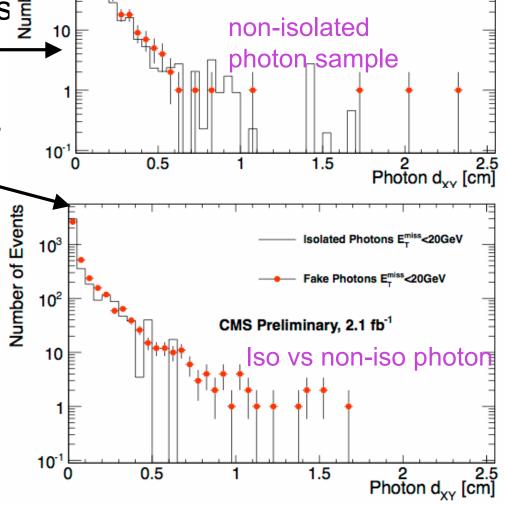
- Dataset: 2.1 fb⁻¹ from 2011 run.
- Trigger: di-photon Et>32(22) to 40(28) Gev for leading (sub-leading) photon.
- Offline Selection:
 - isolated photon E_T>45 GeV; jets: p_{T1} >80, p_{T2} >50 GeV in $|\eta|$ <2.6; MET > 30 GeV
- Converted photon selection:
 - Transverse impact parameter $d_{xy} > 0.6$ cm.
- Background:
 - data driven estimation

$$d_{XY} = -L_X \cdot \sin \phi + L_Y \cdot \cos \phi$$

$$d_Z = L_Z - \frac{L_X \cdot p_X + L_Y \cdot p_Y}{p_T} \cdot \frac{p_Z}{p_T}$$



 d_{XY} distribution for data with MET>30 GeV vs. signal simulation for c_{τ} = 5 cm, normalized to luminosity

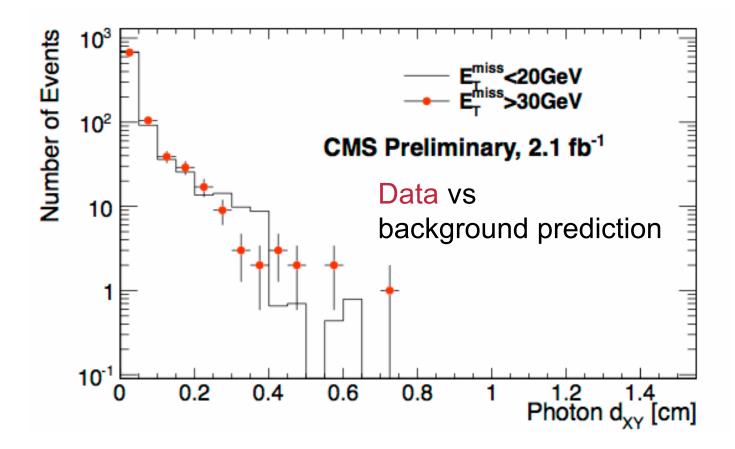

 Photon d_{XY} comparison Photon d_{XY} comparison for — non-isolated(fake) photons for

in low/high MET region.

isolated photons, fake photons in same low MET region.

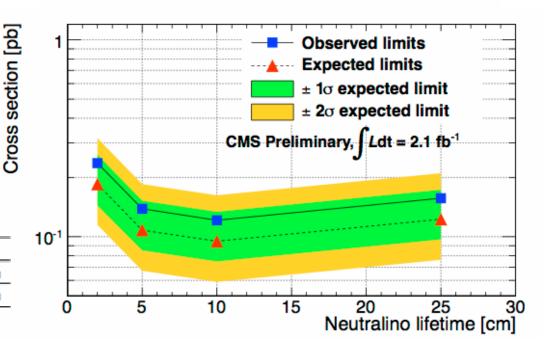
d_{xy} independent of MET

Background can be predicted using MET<20 control sample.



CMS Preliminary, 2.1 fb⁻¹

 Isolated photon d_{XY} for MET<20 GeV (background region) and MET>30 GeV (signal region)



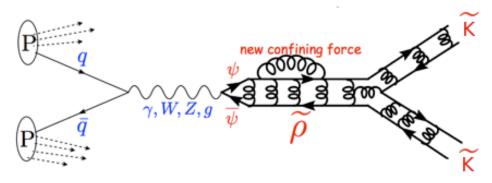
- conversion reco systematic 20% from Z→ μμγ data-MC comparison
- 95% C.L. upper limits on neutralino productions cross section as a function of neutralino lifetime.
- Event selection efficiency vs neutralino lifetime.

cτ [cm]	2	5	10	25
Efficiency	0.921%	1.578%	1.797%	1.388%
Statistical errors	0.046%	0.059%	0.064%	0.055%

Systematics	Uncertainty (%)
Integrated luminosity	4.5
Jet p_T/E_T^{miss} energy scale	< 0.5
Pile-up	2.5
Photon identification Data/MC scale	2.6
Photon-electron difference	0.5
Conversion reconstruction efficiency	20.6
Photon d_{XY} resolution	< 0.5
Total	25

Heavy Stable Charged Particles

- stopped HSCP search cms-pas-exo-11-020
- slow moving HSCP search cms-pas-exo-11-022



HSCP

Model Considered:

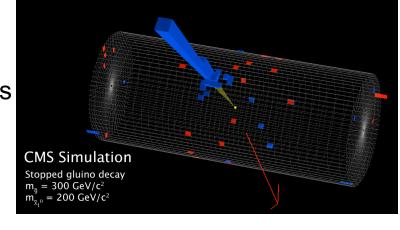
- pair produced gluino/stop (R-hadrons)
- pair produced stau (lepton-like)
- stau from GMSB SPS7 cascade decay
- pair produced hyper-k (through DY + hyper-rho resonance)

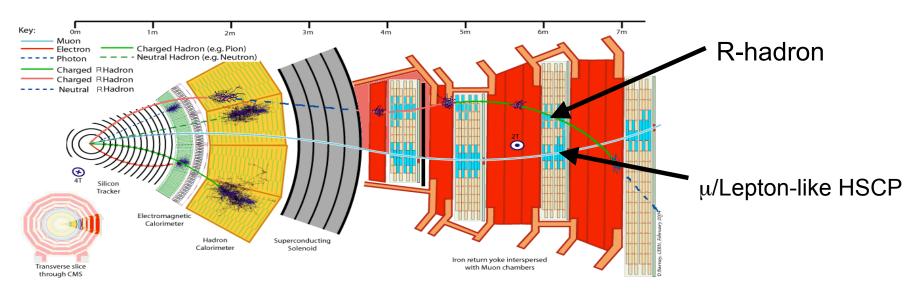
Lepton-like HSCPs behave like (heavy) muons with large ionization energy loss

R-Hadron, also has hadronic interactions

- Cloud model: most R-hadrons end up charged after several interactions. Eur. Phys. J. C50 (2007) 353
- Charge suppression interaction scenario: all R-baryons become neutral after a hadronic interaction

HSCP detection


HSCPs can possibly stop inside (β <0.4) or slowly escape (0.4< β <0.9) detector

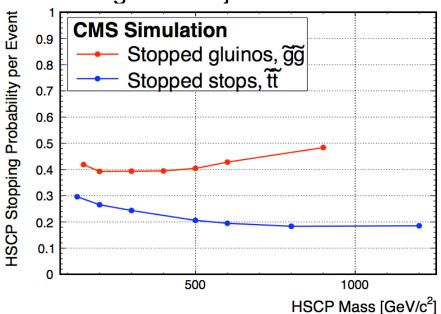

Stopped HSCP: look for energetic hadronic jet from HSCPs decaying when beam off or during beams collisions intervals

Slowly moving HSCP: measure β from delayed time of flight (T.O.F) and tracker dE/dx (ionization energy loss per path length)

Can measure mass from p/(βγc)

Two searches are complimentary

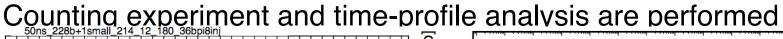
Stopped HSCP

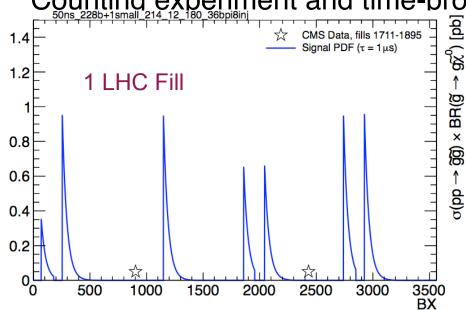


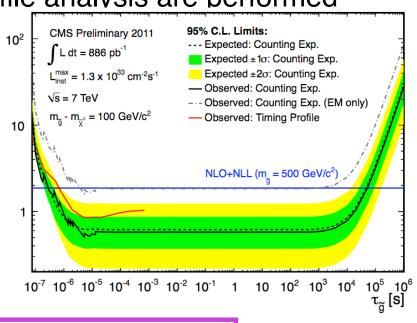
Data Samples:

- 168 hours of trigger live-time LHC fills, peak luminosity up to 10³³ cm⁻² s⁻¹
- 2010 data with peak luminosity of 10²⁸~10³² cm⁻² s⁻¹, as background control sample

Selection:


- dedicated 50 GeV jet trigger: no signals from beam position and timing (BPTX) monitors in a window of ±1 Bunch Crossing (BX)
- 70 GeV jet energy requirement
- beam-related, cosmic and instrumental background rejection



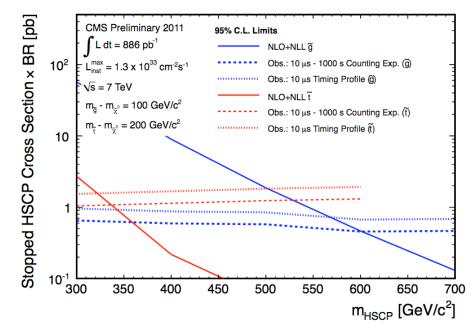


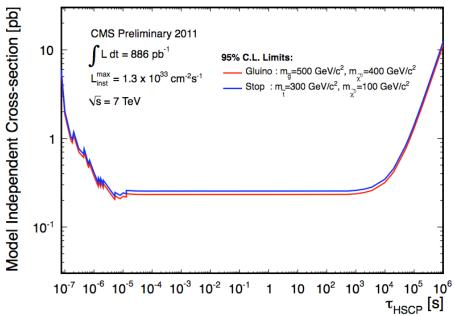
Stopped HSCP

Lifetime	$L_{eff}(pb^{-1})$	Expected Bg	Observed
75 ns	4.3	0.11 ± 0.05	0
100 ns	12.5	0.35 ± 0.14	0
1 μs	139	3.3 ± 1.3	4
10 μs	352	10.1 ± 4.1	9
$30 \ \mu s - 10^3 \ s$	360	10.4 ± 4.2	10
$10^4 \mathrm{s}$	268	10.4 ± 4.2	10
$10^{5} { m s}$	65	10.4 ± 4.2	10
$10^{6} { m s}$	7.5	10.4 ± 4.2	10

Counting Exp.

Stopped HSCP

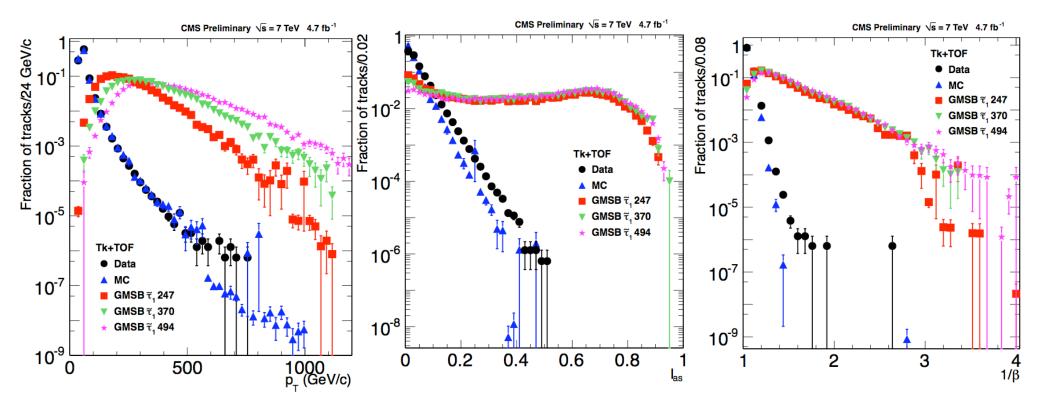



Gluino

 M_{gluino} - M_{neutralino} > 100 GeV, Br(gluino → g + neutralino)
 =100%, m_{gluino} < 601 GeV are excluded @95% C.L. for lifetimes from 10 μs to 1000 s

Stop

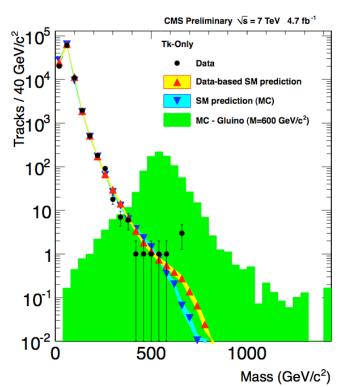
- For M_{stop} M_{neutralino} > 200 GeV, Br(stop → top + neutralino)
 =100%, m_{stop} < 337 GeV are excluded @95% C.L. for lifetimes from 10 μs to 1000 s
- 95% C.L. limits are also set for cross-section X BR X stopping efficiency to be interaction model independent

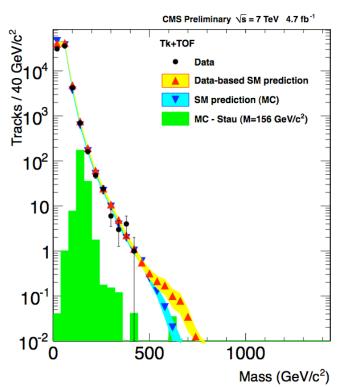


Slowly Moving HSCP

- 4.7 fb⁻¹ data used with Muon40 and MET150 trigger
 - Two analysis methods
 - \checkmark Tracker-only (discriminator I_{as} from tracker dE/dx measument)
 - ✓ Tracker+TOF (β^{-1} measurement from muon system in addition)
 - Look for enhancement in high I_{as} , high $\beta^{\text{-1}}$ and high p_{T} region.

Slowly Moving HSCP

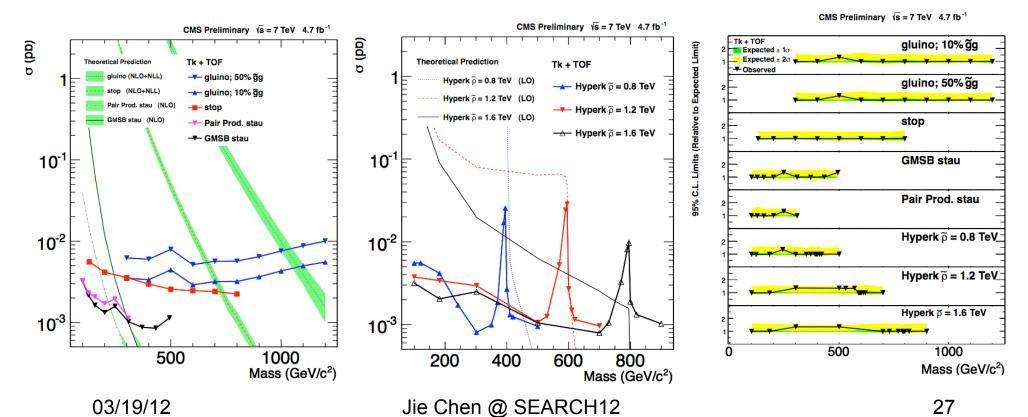



Background estimation:

- utilizing the non-correlation between I_{as} , β^{-1} and $p_{T_{.}}$
- mass prediction from pseudo-exp, using p, I_{h} , and $\beta^{\text{--}1}$ PDF from nonsignal region

Counting experiment:

- in mass window [M_{reco} 2σ_{Mreco} , 2 TeV]
- optimized I_{as}, β⁻¹ and p_T selection for best reach



Slowly Moving HSCP

95% C.L. mass limits are set for

- Cloud model interaction scenario
 - Gluino (10% ~gg): 1091GeV, Stop: 735 GeV
- Charge suppression interaction scenario
 - Gluino(10% ~gg): 923 GeV, Stop: 623 GeV
- Direct pair produced stau: 232 GeV
- hyper-kaon: 482, 599, and 747 GeV for hyper-p masses of 800, 1200, and 1600 GeV

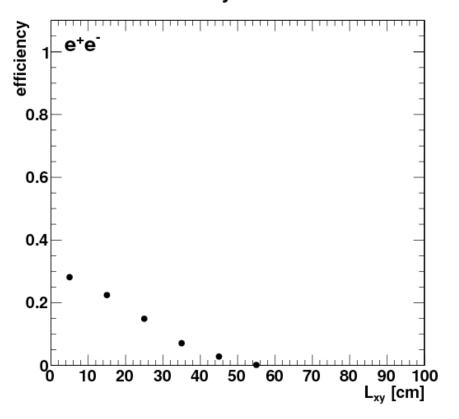
Summary

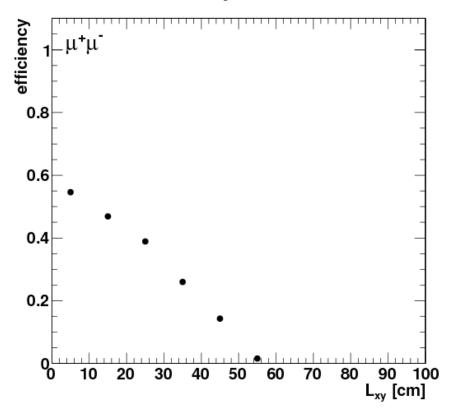
- With 1-4.7 fb⁻¹ integrated luminosity, CMS searched various long-lived particle signatures.
 - displaced di-lepton
 - displaced di-photon
 - stopped and slow moving HSCPs
 - No significant excess observed
- 95% C.L. cross section limits are set on
 - Various BSM models
 - Significant improvement over our 2010 data limits
 - New displaced lepton/photon results
 - new models studied for HSCP analysis
- Results shown are available
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Stay tuned for more exciting long-lived particle searches

Back Up

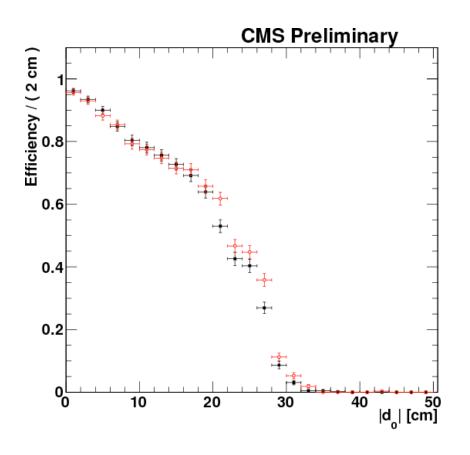
• Limits for Z'.

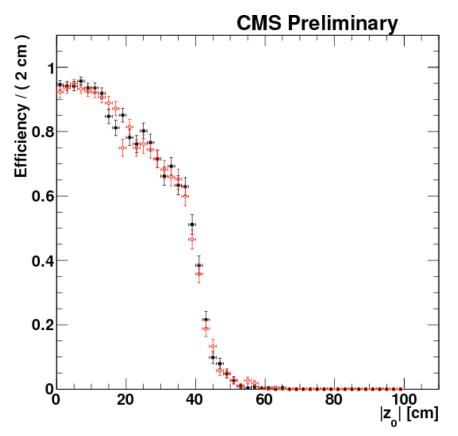

$M_{\mathrm{Z'}}$ or $M_{\mathrm{H^0}}$	$M_{\rm X}$	Dielectron channel		Dimuon channel	
(GeV/c^2)	$\left \text{ (GeV/}c^2 \right) \right $	H_0	Z'	H^{o}	Z'
1000	350	0.86	0.84	0.87	0.85
1000	150	0.74	0.73	0.80	0.79
1000	50	0.73	0.72	0.80	0.78
1000	20	0.74	0.72	0.80	0.79
400	150	0.60	0.54	0.75	0.68
400	50	0.45	0.41	0.58	0.54
400	20	0.45	0.41	0.59	0.55
200	50	0.117	0.077	0.31	0.25
200	20	0.134	0.010	0.32	0.27



 The efficiency to select X -> I⁺I⁻ decay as a function of transverse decay length for dielectron (left) and dimuon candidates (right), shown for the case M_H = 1000 GeV, M_X = 150 GeV/c2.

CMS Preliminary √s=7 TeV MC


CMS Preliminary√s=7 TeV MC

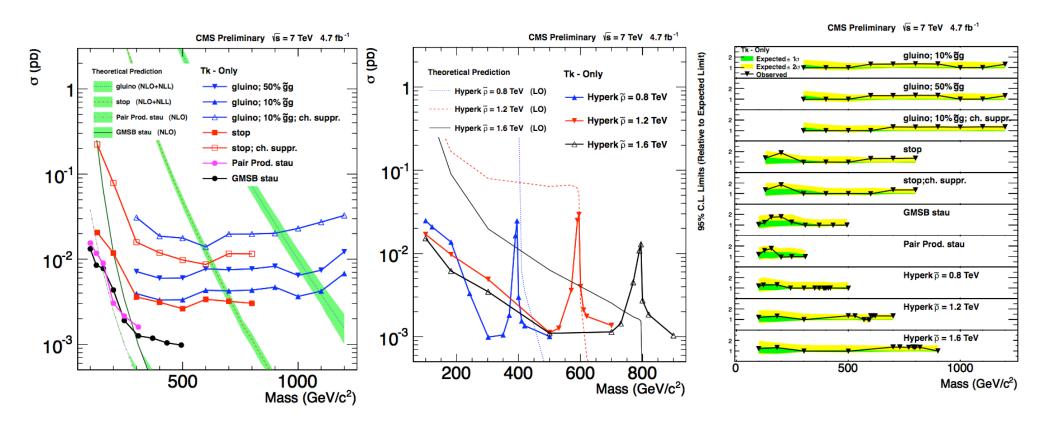


- Efficiency of finding a tracker track, given a cosmic muon reconstructed in the muon chambers. Data vs. Simulation
- Good understanding of displaced track reconstruction.

$M_{ m H^0}$	$M_{ m X}$	$c\tau$	Dielectron channel		Dimuon channel	
(GeV/c^2)	(GeV/c^2)	(cm)	ϵ_1	ϵ_2	ϵ_1	ϵ_2
1000	350	11.7	0.22	0.22	0.51	0.53
		35.0	0.11	0.11	0.29	0.31
		105.0	0.038	0.045	0.12	0.12
1000	150	3.3	0.32	0.34	0.58	0.61
		10.0	0.20	0.20	0.41	0.44
		30.0	0.099	0.085	0.19	0.20
1000	50	1.3	0.32	0.31	0.44	0.56
		4.0	0.23	0.23	0.31	0.40
		12.0	0.11	0.11	0.17	0.20
1000	20	0.5	0.22	0.24	0.023	0.037
		1.5	0.16	0.17	0.022	0.033
		4.5	0.070	0.076	0.017	0.022
400	150	13.3	0.11	0.11	0.40	0.46
		40.0	0.054	0.053	0.23	0.25
		120.0	0.021	0.026	0.094	0.10
400	50	2.7	0.16	0.16	0.45	0.48
		8.0	0.10	0.11	0.33	0.35
		24.0	0.047	0.052	0.17	0.16
400	20	1.3	0.14	0.16	0.28	0.37
		4.0	0.098	0.10	0.20	0.26
		12.0	0.041	0.044	0.10	0.13
200	50	6.7	0.018	0.022	0.19	0.21
		20.0	0.010	0.11	0.12	0.13
		60.0	0.023	0.003	0.054	0.050
200	20	2.3	0.033	0.029	0.12	0.23
		7.0	0.019	0.019	0.14	0.16
		21.0	0.007	0.010	0.066	0.074

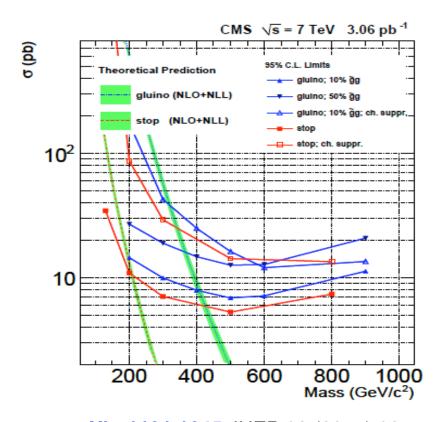
- Final selection efficiency of Higgs -> XX, both for events in which only one long-lived exotic decays to the chosen lepton species ε₁ and for the case where both decay to the chosen lepton species ε₂.
- The uncertainties on efficiencies are dominated by the 20% relative uncertainty related to the tracking performance.

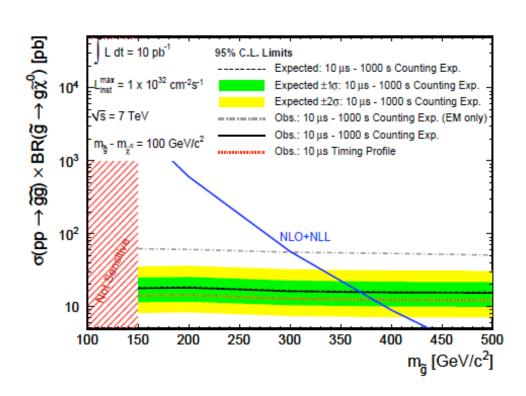
• Signal selection flow for $c\tau$ = 5 cm.


Selection	Events in Monte Carlo
Total	45057
DiPhoton trigger	39988
Photon $E_T > 45$ GeV and $E_T > 30$ GeV	37398
Any ECAL barrel photon $E_T > 45 \text{ GeV}$ and Photon identification	27766
Jets $p_T > 80 \text{ GeV}$ and $p_T > 50 \text{ GeV}$	26229
Conversion selection	1602
$E_T^{miss} > 30 \text{ GeV}$	1542
$d_{XY} > 0.6 \text{ cm}$	711

Slow moving HSCP

Tk+only Analysis




Previous CMS Limits

 CMS HSCP published results from 2010 dataset Gluino exclusion: m < 398, 370 GeV/c²

arXiv:1101.1645 JHEP 03 (2011) 024

arXiv:1011.5861 Phys.Rev.Lett.106:011801,2011