Higgs CP

Comparison of LHC and e+e- collider

S. Bolognesi¹, Y. Gao², A. Gritsan¹, K. Melnikov¹, M. Schulze³, N. Tran², A. Whitbeck¹, Y. Zhou¹

¹Johns Hopkins University, ²FNAL, ³ANL

Snowmass: Seattle Energy Frontier Workshop

July 1, 2013

Discovery of scalar resonance m_H~125 GeV resonance

- Early measurements → Consistent with SM Higgs
 - Measuring properties with H→VV decay kinematics
 - Likely not spin-1, spin-2, or pure CP-odd scalar

Is there CP violation in the Higgs sector?

- How much can we constrain CP-violation in H → ZZ* amplitude with LHC?
 - 1D approach with MELA discriminant
 - Multidimensional approach
- How much can we constrain CP-violation in Z* → ZH with an e+e- collider?
 - Multidimensional approach
- Comparison of results between LHC and e+ecollider

Properties with HZZ

Most general HZZ amplitude

$$\mathscr{A}(HV_1V_2) \propto a_1 m_V^2 \epsilon_1 \epsilon_2 + a_2 f_{\mu\nu}^1 f^{2,\mu\nu} + a_3 f_{\mu\nu}^1 \tilde{f}^{2,\mu\nu}$$

- Parameterized in terms of 4 parameters
 - Cross section treated separately ("couplings")

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3} \qquad \phi_{a3} = Arg(\frac{a_3}{a_1})$$

$$f_{a2} = \frac{|a_2|^2 \sigma_2}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3} \qquad \phi_{a2} = Arg(\frac{a_2}{a_1})$$

$$\sigma_i = \int |\mathscr{A}(a_i = 1, a_{j \neq i} = 0)|^2 d\Omega$$

 Different models manifest themselves uniquely in angular and mass distributions (kinematics)

Event Generator

- Need generator to study production of arbitrary scalar models
- JHUGen arXiv:1208.4018, arXiv:1001.3396
 - LO monte carlo generator
 - Integrates NLO production from other generators
 - production for LHC/Tevatron: $q\bar{q}$; gg
 - spin-0, 1, 2 models at LHC
 - Decays to: ZZ, WW, γγ
 - Documentation and code can be found: http://www.pha.jhu.edu/spin/
- New development: e⁺e⁻ → ZH
 - All couplings and spin correlations included

Higgs CP at LHC

ZZ Kinematic Variables

g(q)

• ZZ decays can be fully described (in ZZ rest frame) by 8 variables¹

- Masses: m_{ZZ} , m_{Z} , m_{Z*}
- Helicity angles: $\cos\theta_1$, $\cos\theta_2$, Φ
- Production angles: Φ_1 , $\cos \theta^*$

- $-p_T$, Y of H distinguish production mechanisms (not relevant for this talk)
- Different couplings are reflected in the 7D probability density function (PDF)

$$P_{sig}(m_{ZZ}^{},\,m_{Z}^{},\,m_{Z^{*}}^{},\,\cos\theta_{1}^{},\,\cos\theta_{2}^{},\,\Phi,\,\Phi_{1}^{},\,\cos\theta^{*}\;;\,f_{a2}^{},f_{a3}^{},\phi_{a2}^{},\phi_{a3}^{})$$

Spin-0 Kinematics (LHC)

- Kinematic distributions can be described:
 - MC simulation (JHUGen)
 - Analytically¹

0+ (SMH)
$$f_{a3}=.5, \phi_{a3}=\pi/2$$

pseudoscalar $f_{a3}=.5, \phi_{a3}=\pi$
 $f_{a3}=.5, \phi_{a3}=0$ $f_{a3}=.5, \phi_{a3}=3\pi/2$

• Full matrix element information expected to provide sensitivity to both f_{a3} and ϕ_{a3}

¹arXiv:1208.4018

CP measurements at LHC

 Use MELA to discriminate SM Higgs from pseudoscalar

$$D = (1 + P_{sig}(fa3 = 1, fa2 = 0) / P_{sig}(fa3 = 0, fa2 = 0))^{-1}$$

- hypothesis testing (as done on CMS & ATLAS)
- measure f_{a3} directly

7D versus 1D

$$L = f_{a3} P_{CP-odd}(D) + (1 - f_{a3}) P_{SMH}(D)$$

$$L = P_{SMH}(\vec{\Omega}; f_{a3}, \varphi_{a3})$$

- Naïve projection to
 - 300/fb and 3k/fb @ 14 TeV
 - no background/det. effects

Precision of fits

lum	fa3	1D fit	7D fit (fa3 free)	7D fit (fa3, phia3 free)
300	.5	.0504±.0004	.0504±.0005	.0504±.0005
3k	.5	.0156±.0004	.0161±.0005	.0163±.0005
300	.25	.0481±.0004	.0464±.0004	.0459±.0003
3k	.1	.0148±.0004	.0129±.0003	.0126±.0003

LHC Sensitivity

- Using 1D fits and including background and detector effects
 - Signal yield:600 (6000)
 background yield: 80 (800)
 300,3000 /fb @ 14 TeV
 - Apply momentum smearing and acceptance cuts

Higgs CP in e+e-

CP Measurements

- LHC, H \rightarrow ZZ*, may become sensitive to f_{a3} =0.1
 - Corresponds a3/a1 = 0.83
 - $f_3(e+e-@250)=0.854$; $f_3(e+e-@500)=0.992$ (a3/a1 const)
- Properties can be inferred from
 - √s dependence of rate or kinematics
 - Combination of rates and kinematics

Calculation based on arXiv:1208.4018 consistent with hep-ph/0106315

Z*→ZH Kinematic Variables

- Same topology as H → ZZ* but in different frame
 - Z, H masses on shell

- Angular distributions are the same

$$P_{sig}(\cos\theta_1,\cos\theta_2,\Phi,\Phi_1,\cos\theta^*;f_{a2},f_{a3},\phi_{a2},\phi_{a3})$$

Spin-0 Kinematics

- Kinematic distributions can be described:
 - MC simulation (JHUGen)
 - Analytically¹

SM Higgs $f_{a3} = 0.1 \Phi_{a3} = 0$

pseudoscalar $f_{a3} = 0.1 \Phi_{a3} = \pi/2$

• Angular distributions sensitive to f_{a3} and Φ_{a3}

¹arXiv:1208.4018

Multi-Dimensional Fits

- Background shapes taken from continuum ZZ
 - Select events where 115< $m_{_{\rm H}}$ < 140
- Modeled with empirical, uncorrelated, PDF
 - Found to provide consistent description of full simulation

e⁺e⁻ Sensitivity (250 GeV)

- Using 3D model:
 - Generate experiments
 - 2k signal 200 background
 - fitting for f_3 and Φ_3
 - Expect sensitivity to $f_{2}(250) = 0.1$

$$f_3(250)=.105$$

 $\sigma(f_3)=0.036$

• Correspond to $f_{a3} = 0.0022$

$$f_{a3}=2.2x10^{-3}$$

 $\sigma(f_{a3}) = 8.0x10^{-4}$

e⁺e⁻ Sensitivity (500 GeV)

- Using 3D model:
 - Generate experiments
 - 1k signal, 100 background
 - fitting for f_3 and Φ_3
 - Expected sensitivity to $f_{2}(500) = 0.1$

$$f_3(500)=.106$$

 $\sigma(f_3) = 0.044$

• Correspond to $f_{33} = 0.00011$

$$f_{a3}=1.1x10^{-4}$$

 $\sigma(f_{a3}) = 5.2x10^{-5}$

Summary

- Tools developed to measure CP-violation in HZZ
 - Event generation with all coupling and spin correlations
 - Full analytical description of kinematics

- LHC: $H \rightarrow ZZ^*$

- e+e-: Z* → ZH

	fa3	Error
LHC (H → ZZ*) 300/fb	0.25	5.8x10 ⁻²
LHC (H → ZZ*) 3000/fb	0.1	1.8x10 ⁻²
e+e- → Z* → HZ √s=250 GeV	2.2x10 ⁻³	8.0x10 ⁻⁴
e+e- \rightarrow Z* \rightarrow HZ \sqrt{s} =500 GeV	1.1x10 ⁻⁴	5.2x10 -5

 Significant improvement for e⁺e⁻ collider (Z* → ZH) with respect to H→ZZ* on LHC

BACKUP

Spin-0 Kinematics (LHC)

- Full matrix element information expected to:
 - provide ~20% improvement in signal sensitivity
 - provide sensitivity to both fa3 and phia3

LHC (H → ZZ*) det. effects

e+e- (Z* → HZ) det. effects

- Background shapes taken from continuum ZZ
 - Select events where $105 < m_{_{\rm H}} < 140$
 - Leptons: $p_{T,l} > 5 \text{ GeV}$, $|\eta| < 2.4$

Signal model with acceptance cuts:

