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Molecular Bremsstrahlung Emission
• EAS particles dissipate energy through ionization

• Produces plasma with Te ~ 104-105K

• Free electrons produce Bremsstrahlung emission in 
microwave regime from interaction with neutral air 
molecules

• Emission is unpolarized and isotropic

3

Potential exists for an FD-like detection technique capable 
of measuring the shower’s longitudinal development with 
nearly 100% duty cycle, limited atmospheric effects and 

low cost
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P.W Gorham et al., “Observations of microwave continuum emission 
from air shower plasmas”, Phys. Rev .D. 78, 032007 (2008)

Plasma density determines level of signal 
coherence

Fully coherent plasma:  Ptot=(Ne)2×P1

Incoherent plasma:  Ptot=Ne×P1

Beam tests results suggest coherent 
emission

However, due to large physical extent of 
shower plasma, EAS emission has an 
unknown level of coherence

G-H fits suggest the plasma scaling in the 
beam may not match EAS scaling



5

Large collection area ~ 10 m2 Use 4.5m dish already 
installed at U of C

Pixel field of view ~1.5° ~ λ/D Extended C-Band
Total field of view ~15° ~50 channels
Time domain 100 ns resolution Fast power detector

Trigger for fast 
transient events

Flash ADC acquisition 
with FPGA trigger

MIDAS Prototype system

I0, sh= 2.8 10-16 W/m2/Hz
E0 = 3.4 1017 eV

@ 10 Km I = 2.8 10-24 W/m2/Hz

Tsys=100K Aeff = 10 m2

Δt = 100ns Δf = 1GHz ΔI = 1.6 10-23 W/m2/Hz
}Equad ~ 2 1018 eV 

Elin ~ 1019 eV

Detection Threshold

∆I =
kBTsys

Aeff
√
∆t∆f

P.W Gorham et al., “Observations of microwave continuum emission 
from air shower plasmas”, Phys. Rev .D. 78, 032007 (2008)
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4.5 Meter Prime Focus Parabolic Reflector

90° Alt
100° Az
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Camera

• 53 Commercial Extended C-Band Feeds

• Feed Horn + LNA + Down Converter  (3.4-4.2 GHz to ~ 1GHz)

• 13K noise floor, 70 dB amplification

• 20° x 10° FOV
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Power detector
0-2 V DC output, log response 

10MHz to 8GHz bandwidth
 100 ns time resolution

Flash ADC

16 channels

14 bit

20 MHz

FPGA trigger

Developed @ 
EFI

Power 
Detector

+18 V +5 V

1 GHz

counting room

FEED B
IA

S

roof

DC 
Pulse

4 G
H

z

To ADC

Analog Channel

nadc = n0 - k PdB = n0 - k log(Plin)
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FLT:  1μs running sum, over threshold trigger 
Each feed has self-regulated threshold to hold rate at 
100Hz

Trigger Running Sum

Threshold

SLT:  require 3 FLT within 20 μs for specified pixel 
patterns, noise rate 0.2Hz

High-Level Veto:  Inhibits trigger when SLT 
exceeds preset value.  Filters periods of 
noise bursts improving livetime.

Clean periods (1s latency) between 95% and 50% 
of the total DAQ time (typical, we had days below 
10%) NIGHT

Noise 
bursts
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Calibration

 Antenna

Log periodic antenna is directed at 
feeds sending 5 μs pulses

Allows for relative calibration, test of 
synchronization, and system timing

Soon we will deploy a low cost patch 
antenna permanently on the 
telescope for continued long term 
calibrations
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Astrophysical sources provide a calibration of system temperature

Calibration

Tsys = 120K

∆nadc = 10 k log(1 +
Psun

Psys
)

∆nadc � 2500

Fsun = 88× 10−22
W/m

2
/Hz

Nobeyama Radio Observatory

Fsys � 3.3× 10−22
W/m

2
/Hz

Fsys =
2kBTsys

Aeff
also have observed moon (sun/100) 

and crab nebula (sun/1000)

Sun
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ow
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Trigger Traces

FLT

First

Last

MC Simulated Events
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Event (thermal noise)
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Noise Event

All rows triggered 
simultaneously

noise is likely due to aviation interference
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Daily modulations (temperature?)

Baseline varies less than 1 dB  over the period

Baseline for two channels over ~40 days of data taking

Continued calibration with patch antenna will help explain the periodic 
fluctuations
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Candidate Event
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MC Event



Conclusions

• Developed a self-triggering FD analog to explore the 
molecular bremsstrahlung emission in EAS

• Improvements currently underway:

• Modifying trigger to better match patterns seen in MC

• Addition of 1GHz band-pass filter to deal with noise 
bursts

• Installation of patch antenna for continued calibration

• Plan to install the set-up in Argentina at the Pierre Auger 
Observatory to look for coincident detections
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Extra Slides
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P.W Gorham et al., “Observations of microwave continuum emission 
from air shower plasmas”, Phys. Rev .D. 78, 032007 (2008)

Insensitive to radio 
Cherenkov

10 ns decay 
constant, 

compatible with 
plasma cooling.
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Pixel without band-pass 
filter

Pixel with band-pass 
filter same run

Installed a 1GHz band-pass filter, 
greatly reduced power in bursting lines

Should eliminate periods of deadtime due to noise bursts 
and make the system more stable
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4-Pixel Patterns across the whole camera

Reduces noise events significantly
Better match for MC data

MC

Peak at 4 pixels triggered, 3 pixel events have low SNR

Trigger Improvements


