

Ionization cooling scheme for a Muon Collider

Diktys Stratakis

Brookhaven National Laboratory

MAP Winter Meeting, SLAC, Menlo Park, CA December 04, 2014

Introduction

- Muons have relative immunity to synchrotron radiation due to their large rest mass
- Have applications to fundamental research as well as to various industrial applications:
 - Muon radiography
 - Medical and material detection applications
 - Neutrino Factory and Muon Collider [This talk]
- But there are some challenges:
 - Short lifetime (~2 μs in rest)
 - Initial muon beam is huge: enormous 6D emittance and very large momentum spread

Motivation

- Muon Collider final 6D emittance is 5-6 orders of magnitude less to the emittance of the born muon beam
- Beam cooling (i.e. reduction of phase-space volume) is necessary → ionization cooling!

Purpose of this work

- Describe a novel rectilinear cooling scheme for a MC
- Review the theoretical framework to predict the behavior of a ionization cooling channel and apply it to our case
- Present the first end-to-end simulation of a rectilinear channel and show a notable 6D emittance reduction by at least 5 orders of magnitude
- Discuss key challenges
 - Space-charge, Magnet feasibility, RF in magnetic fields...
- Future steps & Conclusion
- Note: I will talk only about lattices with discrete absorbers!

Cooling scheme for a Muon Collider

- Front-end produces 21 well aligned muon bunches
- Two sets of 6D cooling schemes
 - One before recombination (trans ε≈1.5 mm)
 - One after recombination (trans ε≈ 0.50 mm or less)
- Final cooling (if necessary)

Emittance exchange for 6D cooling

Concept 1: Generate dispersion and cool via emittance exchange in a wedge absorber

Concept 2: Energy loss dependence on path length in a continuous absorber

- Two concepts, same principle
- Dispersion is introduced to spatially separate muons of different momenta
- This study focuses on channels with discrete absorbers only!

Tapered rectilinear channel

- Offers several advantages for cooling over previously consider helical schemes (idea proposed by V. Balbekov)
- Multiple stages with different cell lengths, focusing fields, rf frequencies to ensure fast cooling

R_FOFO snake channel for 6D muon cooling

("R" can be interpreted as "rectilinear")

MUON COLLIDER*

COMPLETE 6-DIMENSIONAL MUON COOLING CHANNEL FOR A

V. Balbekov, MAP Friday Meeting 02/01/2013 (edited 06/01/13)

D. Stratakis, R. B. Palmer, J. S. Berg, and H. Witte, Brookhaven National Laboratory, Upton, NY

Proceedings of IPAC2014, Dresden, Germany

TUPME020

Ionization cooling theory (Neuffer)

• Transverse Cooling:
$$\frac{d\varepsilon_T}{ds} = -\frac{g_T}{\beta^2 E} \frac{dE}{ds} \varepsilon_T + \frac{\beta_T E_s^2}{2\beta^3 m_\mu c^2 L_R E}$$

$$g_T = 1 - D/w$$

$$\varepsilon_T^{\text{eq}} = \left(\frac{dE}{ds}\right)^{-1} \frac{\beta_T E_s^2}{2\beta g_T m_\mu c^2 L_R}.$$

Longitudinal Cooling: $\frac{d\varepsilon_L}{ds} = -\frac{g_L}{\beta^2 E} \frac{dE}{ds} \varepsilon_L + \frac{\beta_L}{2} \frac{d < \Delta E}{ds}$

$$\frac{d\varepsilon_L}{ds} = -\frac{g_L}{\beta^2 E} \frac{dE}{ds} \varepsilon_L + \frac{\beta_L}{2} \frac{d < \Delta E}{ds}$$

$$\varepsilon_L^{\text{eq}} = \left(\frac{dE}{ds}\right)^{-1} \frac{\beta^2 E \beta_L}{2g_L} \frac{d\langle \Delta E^2 \rangle}{ds}$$

Emittance evolution:

$$\varepsilon^{\text{calc}}(s) = \varepsilon^{\text{eq}} + (\varepsilon^{0} - \varepsilon^{\text{eq}}) \exp\left(-\frac{s}{s^{\text{calc}}}\right)$$

TUPME021

Proceedings of IPAC2014, Dresden, Germany

THEORETICAL FRAMEWORK TO PREDICT EFFICIENCY OF IONIZATION COOLING LATTICES*

Diktys Stratakis[#], Brookhaven National Laboratory, Upton, NY, USA David Neuffer, Fermi National Accelerator Laboratory, Batavia, IL, USA

$$s_T^{\text{calc}} = \frac{\beta^2 E}{g_T} \langle \frac{dE}{ds} \rangle^{-1}$$
 $s_L^{\text{calc}} = \frac{\beta^2 E}{g_L} \langle \frac{dE}{ds} \rangle^{-1}$

Numerical study with ICOOL

- No a priori assumption of the initial beam distribution!
- End-to-end simulation starting from the post-phaserotation beam (point 2)
- 6D emittance reduction by > 5 orders of magnitude

Higgs factory emittances delivered!

Theory and simulation

Found good agreement between theory and simulation

Influence of space-charge (Grote)

- For the first time, the influence of space-charge on the cooling process of muon beams was examined
- Used WARP, a well established code for SC effects
- SC causes particle loss and longitudinal emittance growth

D. P. Grote, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

Space-charge compensation

- Space-charge compensation with rf gradient possible
- Compensation gradient is coupled to the beam intensity

Space-charge compensation

- For a Muon Collider in order to obtain a longitudinal emittance < 1.0 mm the rf gradient of a 805 MHz cavity needs to surpass the demanding value of 32.5 MV/m
- Theory (Palmer et al.):
 - Compensation gradient strongly correlated to bunch charge
 - Avoid long. cooling to < 1.3 mm

$$\xi = 1 + \frac{Qg_0c}{4\pi\varepsilon_0\sqrt{2\pi}\gamma^2\sigma_z^3(2\pi f Encos\varphi)}$$

Magnet feasibility studies

Last (and most challenging) 6D cooling stage

WEPRI103

Proceedings of IPAC2014, Dresden, Germany

MAGNET DESIGN FOR A SIX-DIMENSIONAL RECTILINEAR COOLING CHANNEL - FEASIBILITY STUDY*

H. Witte[†], D. Stratakis, J. S. Berg, R. B. Palmer, Brookhaven National Laboratory, Upton, NY, USA F. Borgnolutti, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

The bad news: rf problems in B-fields

Damage on a 805 MHz rf cavity immersed in a multi-T magnetic field.

 Numerical simulations predict that the copper surfaces of a rf cavity may damaged when B> 1T

The good news: Gas-filled cavities

 The gradient of a gas filled cavity showed no magnetic field dependence in a solenoidal field up to 3 T.

P. Hanlet et al., EPAC 2006, p. 1364 (2006) M. Chung et al., PRL 111, 184802 (2013)

Hybrid solution

- Key Idea: Utilize gas filled cavities in a rectilinear channel
- Majority of cooling will be done in LiH and use gas only to protect the cavity from the high-field. Similar idea was used in the past for 4D cooling (Gallardo & Zisman, Nufact09)

We assume 34 atm of gas, at room T.

A HYBRID SIX-DIMENSIONAL MUON COOLING CHANNEL WITH GAS FILLED CAVITIES.*

Diktys Stratakis[#], Brookhaven National Laboratory, Upton, NY, USA

Lattice performance

- Final emittances are 0.30 mm (trans.) and 1.5 mm (long.)
 with a transmission of 50 % (no decays)
- This work is a "proof-of-principle" numeric study only!

 There remains considerable work to do before a hybrid channel can be considered a validated cooling channel

option.

Challenges for a hybrid cooler

Late evening discussion with Bob Palmer...

Problems

- 1) No space between beam and inner coil
- 2) How does one open vacuum to get at gate HP valves
- 3) HP flange will be thick

Pressure vessel must be built to code for HP inflamable Making room will hurt performance

Summary

- We have presented a conceptual design of a rectilinear channel that in view its simple geometry may offer several technological advantages (compared to a helix or a ring)
- Showed reduction of 6D by at least 5 orders of magnitude.
- Numerical results agree well with theory
- For the first time the influence of space-charge fields on the cooling process was thoroughly examined
- Presented first results on magnet feasibility with encouraging results
- · A hybrid solution with gas filled was presented