

An Introduction to Charged Particle Tracking

Mike Hildreth University of Notre Dame

2010 Hadron Collider Physics Summer School Fermilab, August 16 – 27

Reminder: Design Criteria

Physics-motivated, of course...

- Good Momentum Resolution
 - combination of large B, L
 - large N, or small σ_x to compensate
 - small number of radiation lengths (minimal material)
- Good Impact Parameter Resolution
 - thin/small beampipe
 - high-precision detectors very close to IP
- Good Efficiency
 - hermetic
- Robust against high occupancy
 - granularity (small effective detector size)
 - fast (information from ~few beam crossings at most)

- Note: neither experiment at the Tevatron has pixels. Why?
 - Design choices frozen ~1997
 - hybrid pixel technology not mature at that time
 - or even to be considered for Run IIb upgrades

Side-by-side comparison

- Magnetic tracking: upgrade that had to fit in existing calorimeter
- 2T Magnetic Field
- maximum radius (L) = 0.52m
- length: ~2.5m

- large tracking volume
- 1.4T Magnetic Field
- maximum radius (L) = 1.37m
- length: ~3.1m

Outer Trackers:

CDF Central Outer Tracker:

- 96 layers of sense wires
- single hit resolution 140μm
- full coverage $|\eta| < 1.0$
- $\sigma(p_{\rm T})/p_{\rm T} = 0.15\% \times p_{\rm T} ({\rm GeV})$
- combined with silicon, hit count plus large L gives superior track resolution overall

DØ Central Fiber Tracker:

- 8 barrels of fibers: 16 hits
- 77k fibers: 200 km of scintillating fiber and 800 km of clear fiber for readout
- single hit resolution 100μm
- full coverage $|\eta| < 1.7$
- $\sigma(p_{\rm T})/p_{\rm T} = 0.17\% \times p_{\rm T} ({\rm GeV})$

(SVX I

CDF:

- Barrel-only structure
- 722k channels
- Layer00 on beampipe
- full coverage $|\eta| < 2.0$
- σ_b = 35 μ m @ p_T = 2 GeV

DØ:

(Layer 00)

- Barrels and disks
- 800k channels
- Layer 0 on beampipe
- full coverage $|\eta| < 2.5$
- σ_b = 15 μ m for p_T >10 GeV

90 cm

LHC Design Solutions

Start Small: Collider Pixel Detectors

CMS Pixels:

- $\sigma(z) \sim \sigma(r\phi) \sim 15 \mu m$
- 3 barrel layers: r = 4.3cm, 7.2cm, 11.0cm
 - |η| < 1.6
- 2 disks: $1.8 < |\eta| < 2.4$
- Tracking volume: ~1m long, 0.2m radius
- 1.06 m² of silicon

ATLAS Pixels:

50x400 μm

8x10⁷ channels

- σ (r ϕ) ~ 10 μ m, σ (z) ~ 115 μ m
- 3 barrel layers: r = 5cm, 9cm, 12cm
 - $|\eta| < 1.9$
- 3 disks: $1.9 < |\eta| < 2.5$
- Tracking volume: ~1.6m long, 0.2m radius
- 1.8 m² of silicon

Size?

Some parts of CMS are still small...

% of FPIX

LHC pixel detectors ~ same size as Tevatron Silicon Trackers!

half of Barrel Pixels: under construction

Main Tracking Systems: ATLAS

Main Tracking Systems: ATLAS Barrel

TRT:

- ~100k channels
- ~36 hits/track
- single hit $\sigma_x = 130 \mu \text{m}$

SCT:

- 6.3M channels
- 4 double barrel layers
 - 80mrad stereo angle
 - strip pitch 80 μm
 - binary readout

Performance: $(\eta = 0)$

- $\sigma(p_{\mathrm{T}})/p_{\mathrm{T}} =$ $0.038\% \times p_{\mathrm{T}}(\mathrm{GeV})$
- σ_b = 11 μ m

@
$$p_{\rm T}$$
 = 1 TeV

Main Tracking Systems: ATLAS Endcap

TRT: 160 straw planes, 0.85 < |z| < 2.7m

250k channels

SCT: 9 double sided-disks (radial+40mrad)

• $1.5 < |\eta| < 2.5$

Performance: $(\eta = 2.5)$

•
$$\sigma(p_{\rm T})/p_{\rm T} = 0.11\% \times p_{\rm T}({\rm GeV})$$

•
$$\sigma_b$$
 = 11 μ m @ p_T = 1 TeV

some nice event displays

Main Tracking Systems: CMS

some nice event displays

Muon systems: also trackers!

Complicated systems:

- Must track with good precision
- nasty magnetic field variation
- must be fast enough to trigger

ATLAS:

- four different technologies
- huge area: 10,000m²
- 1 M channels
- high-precision!
- highly-evolved internal alignment system

		Chamber resolution (RMS) in			Measurements/track		Number of	
Type	Function	z/R	φ	time	barrel	end-cap	chambers	channels
MDT	tracking	35 μm (z)			20	20	1088 (1150)	339k (354k)
CSC	tracking	$40 \mu m (R)$	5 mm	7 ns	_	4	32	30.7k
RPC	trigger	10 mm (z)	10 mm	1.5 ns	6		544 (606)	359k (373k)
TGC	trigger	2–6 mm (<i>R</i>)	3–7 mm	4 ns		9	3588	318k

More muons

ALICE

ALICE Tracking

- optimized for dE/dx, stand-alone particle tracking for $p_{\rm T}$ < 100 MeV/c
- · high-density, low-rate environment
- · SSD: 2 layers of double-sided silicon
 - 2.7 M channels
- · SDDs: 133k channels
 - transverse drift
- Pixels: 15.6M channels

• σ_b = 20 μ m, σ_z = 100 μ m @ p_T = 10 GeV

- Most ambitious TPC ever constructed
- 95m³ gas volume; overall coverage $|\eta|$ < 0.9
- 557k readout pads
- total drift time 92μs
- 1000 samples per drift time
- 8000 particles per unit of rapidity!
- $\sigma(p_{\rm T})/p_{\rm T} = 0.45\% \times p_{\rm T} ({\rm GeV})$

ALICE event pictures

Tracker size comparison: quadrants

LHC 4π tracking systems make CDF look tiny!

21

LHCb

Single-arm spectrometer:

very different geometry

similar requirements on precision/resolution

- Extremely high-rate environment
- High-precision vertexing
- Five separate tracking planes
- Dipole for momentum measurement
- Muon system: MWPC or triple GEMs
- premium placed on thin detectors

LHCb VErtex LOcator (VELO)

- 21 VELO stations (r and φ silicon sensors)
 - sensor pitch 35-100μm
 - 2x2048 channels per station
- placed in a secondary vacuum vessel
- 3cm separation, 8mm from beam!
- separated by a 300 μm of Al RF foil
- detector halves retractable for injection
- 4μm resolution, ~5μm variation fill-to-fill

LHCb: other tracking

TT:

- four planes of Silicon Strips
 - 0°, +5°, -5°, 0° (XUVX)
 - 183µm readout pitch
 - 55μm resolution/hit
 - 8.2 m²; 140k channels

IT:

- three stations of Silicon Strips
 - 4 XUVX layers each
 - 198 μm readout pitch
 - 55μm resolution/hit
 - 4 m²; 130k channels

OT:

- three layers of straw tubes
 - each 0°, +5°, -5°, 0° (XUVX)
 - 5mm straws
 - 250μm resolution/hit
 - 56k channels

LHCb: other tracking

Performance:

S. Borghi (ICHEP)

- Primary vertex resolution (*x*,*y*,*z*):
 - achieved (16, 15, 91) μm
 - expect (11, 11, 57) μm
- Impact parameter resolution (both planes):
 - achieved 16μm, expect 11μm ultimately
- $\sigma(p_{\mathrm{T}})/p_{\mathrm{T}} \sim 0.45\% \times p_{\mathrm{T}}(\mathrm{GeV})$

TT:

- four planes of Silicon Strips
 - 0°, +5°, -5°, 0° (XUVX)
 - 183µm readout pitch
 - 55μm resolution/hit
 - 8.2 m²; 140k channels

IT:

- three stations of Silicon Strips
 - 4 XUVX layers each
 - 198 μm readout pitch
 - 55μm resolution/hit
 - 4 m²; 130k channels

OT:

- three layers of straw tubes
 - each 0°, +5°, -5°, 0° (XUVX)
 - 5mm straws
 - 250μm resolution/hit
 - 56k channels

Engineering considerations

Services:

Example: CMS

Microstrip tracker	Pixels		
~210 m ² of silicon, 9.3M channels	~1 m ² of silicon, 66M channels		
73k APV25s, 38k optical links, 440 FEDs	16k ROCs, 2k olinks, 40 FEDs		
27 module types	8 module types		
~34kW	~3.6kW (post-rad)		

- Translations: APV = ROC = readout chip, FED = front end electronics
- 40k individual optical links for readout: thousands of cables
- Mechanically complicated: 35 different structures x thousands of pieces
- Cooling! ~ 40kW to conduct out of a volume cooled to -10C
- Don't forget about support structure engineering:
 - must be stiff, thin, with zero thermal expansion coefficient
- built-in alignment infrastructure: Laser systems, other optics

Cost per channel (CHF)

Item	ALICE	ATLAS	CMS	LHCb
pixel sensors	0.02	0.05	0.02	3.23
pixel Total	0.17	0.18	0.13	24.56
Si Strips	1.88	3.46	0.99	9.82
Si Total	5.82	7.23	6.68	24.71
Outer Sensors	7.68	25.39		49.47
Outer Total	30.60	48.40		169.14
Total Cost (kCHF)	35976	77211	70685	21055

- Note: My numbers, taken from TDRs and inflation-adjusted to 2004 CHF
- for LHCb, pixel = VELO
- looks like CMS got a volume discount
 - ATLAS cost breakdown for sensors probably includes some other items
- silicon sensors are very cheap compared to infrastructure, readout electronics

Conclusions on Tracking Systems

- All "modern" experiments require state-of-the-art tracking systems
 - highest possible resolution commensurate with cost, engineering
 - performance parameters not that different overall
 - optimized for the physics goals

Tracker Commissioning

Ok, you've installed your multi-MCHF tracking detector, and now you want to use it to do physics. First things first:

Two pieces:

1. Does it work?

- is the cabling correct?
- are the voltage settings correct?
- are the timing delays optimal?
- are pieces dead/noisy/inefficient?

2.Do you understand it?

- is the efficiency what you expect?
- is the resolution what you expect?
- is the overall performance what you expect?

Work has to be done in this order

hardware questions

physics questions

Here: "expect" means what your detailed simulation tells you

⇒ simulation usually has to be updated to match "real" detector

Tracker Commissioning: How?

- After the tracker is installed, you only have two sources of particles with which you can calibrate: cosmics and collisions
 - movies from CMS: Cosmics muons in the DTs, central tracker

Cosmics

- Free high-energy particles (muons) from Mother Nature
 - underground energy spectrum:

Standard steeply falling spectrum

$$\frac{dN_{\mu}}{dE_{\mu}d\Omega} \approx \frac{0.14 \, E_{\mu}^{-2.7}}{\text{cm}^2 \text{ s sr GeV}}$$

gets flattened somewhat at the low end by traversing lots of rock/earth

 At 60m below surface, one 10 GeV/c muon every 100 sec

- One issue: Mother Nature has no beam clock. Asynchronous arrival of cosmic rays means special care has to be taken to deal with precision timing in detectors.
 - limited "live" periods
 - potentially use other detectors to set t_0

Tracker Commissioning

Cosmic ray muons can be used to answer most of these questions:

1. Does it work?

- is the cabling correct?
- are the voltage settings correct?
- are the timing delays optimal?
- are pieces dead/noisy/inefficient?

2. Do you understand it?

- is the efficiency what you expect?
- is the resolution what you expect?
- is the overall performance what you expect?
- Simple, low-multiplicity events with high-energy, straight tracks are the tracking commissioner's dream test sample
 - with enough statistics, one can systematically map the detector performance (modulo precision timing and azimuth issues)
 - no beam needed (yet)

Tracker Alignment

Back to ALICE:

- Reminder: Tracker alignment and measurement error dominate track parameter resolutions at high $p_{\rm T}$.
 - Measurement errors are intrinsic to detector technology
 - Alignment can be corrected
- Basic effect:

random hit offsets due to mechanical misalignment effectively enlarge the single hit measurement error, leading to worse resolution

Systematic mechanical shifts lead to biases in momentum measurement

Tracker Alignment

How do you fix this?

Toy Alignment:

Consider a five-layer tracker

borrowed from F. Meier

How do you fix this?

Toy Alignment:

A track goes through, leaving hits

How do you fix this?

Toy Alignment:

All you really see are the hits, actually

How do you fix this?

Toy Alignment:

Now, if your tracker is misaligned, the hits positions really look like this

How do you fix this?

Toy Alignment:

If you assume the module positions are "ideal", you see this

How do you fix this?

Toy Alignment:

So your track really looks like this

How do you fix this?

Toy Alignment:

To "align", we keep track of the "residuals" between the hits and the projected track positions (shown as ______) for many tracks, then adjust the positions of the actual detectors to minimize the residuals across the whole tracker.

Tracker Alignment: technical description

Another χ^2 minimization:

$$\chi^{2}(\mathbf{p},\mathbf{q}) = \sum_{j}^{\text{tracks}} \sum_{i}^{hits} \mathbf{r}_{ij}^{T}(\mathbf{p},\mathbf{q}_{j}) \mathbf{V}_{ij}^{-1} \mathbf{r}_{ij}(\mathbf{p},\mathbf{q}_{j})$$

where \mathbf{p} are the tracker geometry parameters, \mathbf{q}_j are the track parameters, and \mathbf{r}_{ij} are the residuals: $\mathbf{r}_{ij} = \mathbf{m}_{ij} - \mathbf{f}_{ij}(\mathbf{p},\mathbf{q}_j)$, where \mathbf{m} is the measured position and \mathbf{f} is the predicted one

Scale of the Problem: (e.g. CMS Tracker)

- Each module has 6 degrees of freedom:
 - 16588 modules x 6 = ~10⁵ parameters

Each track has 5 degrees of freedom, need 10⁶ tracks or more
 ⇒ ~10⁷ parameters to deal with

Not easy!

Alignment Techniques

- 1. Global (e.g. "Millepede-II" for CMS)
 - Matrix inversion concerned with module parameters only:
 - ~10⁵x10⁵ matrix
 - Correlations between modules included
 - simplified tracking parameterization: no Eloss, MS
 - few iterations
- 2. Local ("HIP" (= Hit Impact Parameter) for CMS, 3 different ones for ATLAS)
 - Local minimization of residuals: ~10 parameters at a time
 - can incorporate survey data as a constraint
 - Full Kalman track extrapolation with MS, Eloss
 - includes local correlations between adjacent
 - can have many iterations if starting values are far off

Cross checked for consistent results...

CMS uses both in an iterative sequence

Alignment Results (cosmics)

⇒ Basically, all detectors reached near-optimal alignment before collisions

Alignment Results (cosmics)

⇒ better results available, especially for endcaps, with collision data

 Split cosmic track in half, fit each half separately, use comparison of results to evaluate track parameter resolution

Alignment pitfalls

• There exist modes of detector deformation for which there is no change in total χ^2 , yet the physical locations are not "ideal"

This is tricky...

Need orthogonal sets of tracks to constrain these modes:

- cosmics, which don't pass through the tracker origin
- · collision tracks
- collision tracks with B=0

r- $r\phi$ mode 1

r- $r\phi$ mode 2

Detector Material

To correctly account for energy loss and multiple scattering, you need to know where the material is inside your detector

Photon conversion probability in a thin cylindrical shell:

$$dN_{conv} = N_{\gamma}(R, \theta, \phi) \cdot R^2 \sin \theta \ d\theta \ d\phi \frac{P}{X_0} dR \qquad N_{\gamma}(R, \theta, \phi) \propto \frac{1}{R^2 \sin \theta}$$

$$N_{\gamma}(R,\theta,\phi) \propto \frac{1}{R^2} \sin \theta$$

Can also have Nuclear Interactions:

- swap $P(\text{photons}) \sim 7/9 \text{ to } P = 1, X_0 \rightarrow \lambda_0$
- Different reconstruction characteristics:

Nuclear interactions:

Good vertex resolution, but many soft tracks with large impact parameters:

⇒ need special tracking cuts

Some examples:

MC: distribution of material weighted by photon conversion probability

Data: positions of reconstructed photon conversions

40

X (cm)

Some examples:

MC: distribution of material weighted by nuclear interaction probability

Data: positions of reconstructed nuclear interactions

note the effects of lower reconstruction efficiency at high radius

Some examples:

Extracting the material budget

can "unfold" this
distribution
using estimates
of the photon
position
resolution

Extracting the material budget

- Some other ways to study the material (there are many):
 - errors in track fit due to MS: compare $\sigma(x)/x$ ("pull distribution") in various regions of the detector to see if errors are correct $(\sigma(x)/x \cong 1)$
 - study evolution of reconstructed resonance (e.g., K_s) masses across different layers of the detector. Wrong energy loss correction will result in mass shifts (c.f. ATLAS)

Tracking Systematics

There are many other systematic studies of tracker performance one **needs** to make (and that I don't have time to discuss...)

- using track properties themselves or properties of resonances
- Charge Collection:
 - for dE/dx calibration → particle ID
- Efficiencies:
 - single-hit level → tracking efficiency per particle type
- Momentum Scale:
 - studies of magnetic field map, reconstruction biases, etc.

. . .

Tracking Systematics: Results

Health Hazards: Occupancy

(Granularity required!)

Health Hazards: Radiation Damage

- Wire chambers are susceptible to "ageing" effects due to highrate operation (many discharges)
 - e.g. whiskers growing on anode wires bad for uniform E field

August 20-23, 2010

Mike Hildreth - Charged Particle Tracking

Health Hazards: Silicon Radiation Damage

- Many particles produced means much flux through detectors
 - example: ATLAS

- Two general types of radiation damage
 - "Bulk" damage due to physical impact within the crystal
 - induced defects can be electrically active
 - "Surface" damage in the oxide or Si/SiO₂ interface
- Sensors can fail from radiation damage by virtue of...
 - Noise too high to operate effectively
 - Depletion voltage too high for sensor/power supply
 - Loss of inter-strip isolation (charge spreads out too much)
- pixels inherently more robust because of much smaller area

Solution: new detectors!

- Radiation: for example, ATLAS pixels were designed to withstand 1×10¹⁵ 1MeV n_{eq}/cm² fluence (~3 years at full nominal LHC luminosity)
 - BUT sLHC: 2×10¹⁶ 1MeV n_{eq}/cm² dose at the inner pixel radius
 - not only do you need new detectors, you need new detector technology that is more radiation-hard

"High Luminosity LHC" Upgrades

 All detectors planning some sort of tracker replacement to deal with radiation damage and occupancy issues

ATLAS current B layer

possible new B layer new beampipe

2014: insert new radiationhard tracking layer to maintain performance as old one ages New Tracker: ~2016

- Pixels: 4 pixel layers, 6 pixel disks 3.7-20.9 cm
- Strips: 5 barrel layers: between 38 and 95 cm
 - 3 inner layers: SHORT STRIPS: 24 mm long
 - 2 outer layers: LONG STRIPS: 96 mm long
 - 5 double sided disks on each End-Cap

Vigorous (frenzied?) R&D programme to find appropriate radiation-hard technologies for these detector replacements

"High Luminosity LHC" Upgrades

CMS: alternative tracker designs, incorporating L1 Track Trigger

2016: work toward increased performance (resolution, granularity) with dramatically reduced material budget

(also planning phased pixel upgrade: 2014)

August 20-23, 2010

Track Triggering with Silicon?

The problem:

- L1 muon trigger rate plateaus, will be 200kHz at L = 10³⁵
- combining track information: x100 reduction
- Need a track trigger at L1

A solution?

 closely spaced layers with "big" pixels (100µmx1mm?) can provide local momentum measurements

 the hard part is building the readout infrastructure to service such a large channel count at the requisite speeds

Conclusions

- Tracking is a rich and complex field
 - nearly always at the edge of the technically-possible
 - advances in tracking technology have done more to drive the advances in detector capability (and, hence, discovery) than any other technology
 - rate & resolution are both key
 - explosion of new detector techniques
 - have nearly realized the electronic 25ns bubble chamber
 - many design challenges remain for high-luminosity high-radiation regimes
- Always a shortage of experts
 - good way to insure indefinite employability

Go out and Track!

Bibliography

- The LHC Experiments:
 - Tracker TDRs for each of the experiments
 - a wealth of information, references
 - Detector performance papers
 - Compendium of talks by each of the experiments
 - most lists are searchable by detector group, or "upgrade"
 - lots of technical information from special topical conferences
- The Tevatron Experiments
 - slightly less well-documented, but NIM papers, technical talks available
- General books about particle detectors
 - W. R. Leo "Techniques for Nuclear and particle Physics Experiments"
 - K. Kleinknecht "Detectors for Particle Radiation"
 - C. Grupen "Particle Detectors"
 - G. Lutz "Semiconductor Radiation Detectors"
 - W. Blum, W. Riegler, G. Rolandi "Particle Detection with Drift Chambers"
- The PDG, and references within
- Past lectures in this (and other) series

